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Foreword

Score-driven models, also known as generalized autoregressive score (GAS) models and dynamic
conditional score (DCS) models, constitute a contemporary framework for time series modeling.
Within this framework, dynamic models can be built upon any given probability distribution, allowing
for any parameter to be time-varying. The pivotal element enabling this versatility is the incorporation
of the score, i.e. the gradient of the log-likelihood function, in model dynamics. The score-driven
model based on the normal distribution with time-varying mean corresponds to the autoregressive
moving average (ARMA) model, while the score-driven model based on the normal distribution with
time-varying volatility corresponds to the generalized autoregressive conditional heteroskedasticity
(GARCH) model. Utilizing other distributions, however, leads to the development of entirely novel
models suitable for a wide array of univariate and multivariate data types, including non-negative,
count, integer, and ranking data. Score-driven models are classified as observation-driven, but several
empirical studies have found that, in general, they have comparable performance to parameter-driven
models while offering straightforward estimation through the maximum likelihood method.

This habilitation thesis consists of seven papers dedicated to score-driven models, either authored
entirely by me or in which I have made significant contributions. Additionally to writing these
papers, I have developed an R package named gasmodel, which is designed to facilitate the estimation,
forecasting, and simulation of a wide range of score-driven models. The first paper in this collection
presents the framework of score-driven models, reviews the score-driven literature, and explains the
gasmodel package, while the subsequent papers delve into specific score-driven models and their
respective applications.

The contents of the papers in this collection are outlined below:

1.
Holý V (2023). “gasmodel: An R Package for Generalized Autoregressive Score
Models.” In review in Journal of Statistical Software.

This paper serves as a companion to the gasmodel package. It provides a comprehensive description
of the package’s functionality and offers practical illustrations of its usage. The aim of the package
is to provide flexible customization, enabling users to incorporate various parametrizations, exoge-
nous variables, joint and separate modeling of exogenous variables and dynamics, higher score and
autoregressive orders, custom and unconditional initial values of time-varying parameters, fixed and
bounded values of coefficients, and handling missing values. It offers a selection of 26 distributions,
catering to various univariate and multivariate data types such as binary, categorical, ranking, count,
integer, circular, interval, compositional, duration, and real data. Model estimation is performed
using the maximum likelihood method and the Hessian matrix. Furthermore, the package offers a
range of functionalities, including forecasting, simulation, bootstrapping, and assessment of parame-
ter uncertainty. Two case studies are presented to showcase the package’s utility: the analysis of the
timing of bookshop orders and the analysis of ice hockey rankings. The package is also compared to
an alternative package called GAS, which allows only for basic model formulation without exogenous
variables and offers a limited range of distributions.
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2.

Holý V, Zouhar J (2022). “Modelling Time-Varying Rankings with Autoregressive
and Score-Driven Dynamics.” Journal of the Royal Statistical Society: Series C (Ap-
plied Statistics), 71(5), 1427–1450. ISSN 0035-9254. https://doi.org/10.1111/
rssc.12584.

This paper introduces an innovative score-driven model designed for dynamic rankings, utilizing
the Plackett-Luce distribution, which is based on the Luce’s choice axiom, with time-varying worth
parameters. The model’s effectiveness is demonstrated through its application to the outcomes of
the Ice Hockey World Championships, and potential applications in other domains are explored.
This contribution holds substantial significance, particularly in light of the limited existing literature
addressing the dynamics of ranking data. The model can be used with a large number of ranked
items, accommodates exogenous time-varying covariates and partial rankings, and is estimated via
the maximum likelihood in a straightforward manner. Simulation experiments show that the small-
sample properties of the maximum-likelihood estimator improve rapidly with the length of the time
series and suggest that statistical inference relying on conventional Hessian-based standard errors is
usable even for medium-sized samples. The empirical application of the model to the Ice Hockey
World Championships from 1998 to 2019 underscores its practicality. It is found that the mean-
reverting model offers a superior fit to the data compared to both the static and random walk
models. This approach presents several key advantages, including the compilation of the ultimate
(long-term) ranking of teams, the straightforward estimation of the probabilities of specific rankings
(e.g., podium positions), and the prediction of future rankings. Furthermore, this paper discusses
potential applications to rankings based on underlying indices, repeated surveys, and non-parametric
efficiency analysis.

3.
Holý V (2023). “Ranking-Based Second Stage in Data Envelopment Analysis: An
Application to Research Efficiency in Higher Education.” https://arxiv.org/abs/
2307.01869. In review in Annals of Operations Research.

This paper is a follow-up study that explores the use of the score-driven ranking model in the context
of two-stage data envelopment analysis (DEA). In DEA research, it is common to follow efficiency
measurements with a second-stage regression analysis using efficiency scores as dependent variables
and contextual (or environmental) variables as independent variables. Often, efficiency is assessed
annually, requiring a panel regression as the second-stage model to account for time-varying con-
textual factors. The most commonly used panel methods for the second stage include panel linear
regression and panel Tobit regression. This paper proposes an alternative approach to the second
stage of DEA, suggesting the use of rankings instead of efficiency scores. The score-driven ranking
model proves valuable as it avoids problems specific to efficiency scores. It is also somewhat robust to
the chosen DEA technique. The empirical part of the paper focuses on assessing research efficiency
in higher education among European Union (EU) countries by analyzing scientific publications from
2005 to 2020. In the first stage, DEA analysis is conducted for each year independently, using gross
domestic expenditure on research and development (R&D) and the number of researchers as inputs
to reflect financial and human resources, respectively. For outputs, the number of publications and
the number of citations are used to reflect the quantity and quality of scientific research, respectively.
In the second stage, rather than relying solely on efficiency scores, the paper advocates for incorpo-
rating rankings using the score-driven ranking model, emphasizing its potential as a robustness check.
When employed to assess research efficiency in the higher education sector and its connection with
good governance, the approach confirms a positive relation with the Voice and Accountability indi-
cator found in standard panel linear regression, while suggesting caution regarding the Government
Effectiveness indicator.
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4.
Holý V, Tomanová P (2022). “Modeling Price Clustering in High-Frequency Prices.”
Quantitative Finance, 22(9), 1649–1663. ISSN 1469-7688. https://doi.org/10.
1080/14697688.2022.2050285.

In finance, the price clustering refers to an increased occurrence of specific prices. Notably, it arises
from the activities of distinct agent types, trading exclusively in particular multiples of the tick
size, resulting in the frequent appearance of these multiples in price levels. As a case in point,
stocks on prominent exchanges like NYSE and NASDAQ exhibit precision trading to the nearest
cent, yet multiples of five and ten cents manifest more frequently in price levels. This phenomenon,
observed across various financial instruments and markets, however, is rarely integrated into existing
price models. To address this behavior, this paper introduces a novel discrete score-driven model
for prices, leveraging a dynamic mixture of double Poisson distributions that accommodates both
dynamic volatility and the evolving proportions of agent types. An empirical study of 30 Dow Jones
Industrial Average (DJIA) stocks from the first half of 2020 reveals intriguing findings. Analyzing
price clustering daily, in alignment with prevailing literature approaches, shows that daily volatility
positively influences price clustering. However, upon employing the high-frequency price model,
a contrasting observation emerges: instantaneous volatility inversely affects price clustering. Hence,
data aggregation levels critically influence the relationship between price clustering and volatility. At a
granular level, while heightened daily volatility corresponds with intensified price clustering, increased
instantaneous volatility yields the reverse effect. Concurrently, volume amplifies the impact on price
clustering, whereas factors like price and last trade duration remain statistically inconsequential.

5.
Holý V (2023). “An Intraday GARCH Model for Discrete Price Changes and Irreg-
ularly Spaced Observations.” https://arxiv.org/abs/2211.12376. In review in
Annals of Operations Research.

This study presents an innovative approach to modeling high-frequency time series of prices, address-
ing their unique characteristics such as irregularly spaced observations, simultaneous transactions,
discrete price levels, and the presence of market microstructure noise. The proposed model lever-
ages smoothing splines to capture the relation between trade durations and price volatility, as well
as intraday patterns of trade durations and price volatility. Grounded in the zero-inflated Skellam
distribution with a newly proposed overdispersion parametrization, this dynamic model incorporates
time-varying volatility within the score-driven framework, and effectively filters market microstruc-
ture noise using a moving average component. While other models in the literature also address these
issues, this is the first model to integrate all four components. Empirical analysis, conducted on data
of the IBM stock traded on the New York Stock Exchange (NYSE), demonstrates the model’s ability
to provide a robust fit to the observed high-frequency price data. It is found that volatility per second
decreases with increasing trade duration, which is consistent with the literature. Beyond its utility in
modeling intraday volatility, this model also proves valuable for measuring daily realized volatility as
a parametric alternative to realized kernels and similar measures, filtering both diurnal patterns and
market microstructure noise. Additionaly, the results for the CA, CSCO, EA, INTC, MA, and MCD
stocks traded on the NYSE and NASDAQ exchanges are also reported providing further empirical
evidence.
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6.

Blasques F, Holý V, Tomanová P (2022). “Zero-Inflated Autoregressive Condi-
tional Duration Model for Discrete Trade Durations with Excessive Zeros.” https:
//arxiv.org/abs/1812.07318. In review in Studies in Nonlinear Dynamics &
Econometrics.

Simultaneous transactions must also be considered in models aiming to capture the time intervals
between transactions within the autoregressive conditional duration (ACD) literature. Typically, in
the ACD literature, models are constructed based on continuous distributions that do not accommo-
date zero values within their support. All zero durations are usually assumed to correspond to split
transactions and are subsequently discarded from the dataset. The present study, however, advocates
against the removal of zero durations from the data. It posits that zero durations can be associated
not only with split transactions but also with independent transactions. Furthermore, it highlights
that split transactions can produce both zero and positive values of durations. In response to these
considerations, the paper proposes a discrete model capable of effectively handling an abundance of
zero values. This novel model employs the zero-inflated negative binomial distribution with score
dynamics, incorporating mean, overdispersion, and zero-inflation parameters, all of which are treated
as time-varying. This model enables the distinction between the processes generating split and in-
dependent transactions. The study leverages the asymptotic theory on score models to establish the
invertibility of the score filter and verify that sufficient conditions hold for the consistency and asymp-
totic normality of the maximum likelihood of the model parameters, in the case of time-varying mean.
An empirical investigation, encompassing data from six stocks traded on the Euronext, NYSE, and
NASDAQ exchanges, uncovers that split transactions account for approximately 92 to 98 percent of
durations smaller than 0.01 seconds. Intriguingly, the loss of decimal places in the proposed approach
is less severe than the incorrect treatment of zero values in continuous models.

7.

Tomanová P, Holý V (2021). “Clustering of Arrivals in Queueing Systems: Au-
toregressive Conditional Duration Approach.” Central European Journal of Op-
erations Research, 29(3), 859–874. ISSN 1435-246X. https://doi.org/10.1007/
s10100-021-00744-7.

This paper explores the application of score-driven ACD models in the context of queueing systems.
Contrary to the typical assumption that arrivals are independent and exponentially distributed, the
empirical analysis of an online bookshop demonstrates an underlying autocorrelation structure in
inter-arrival times. To account for diurnal and seasonal variations, a cubic spline approach is em-
ployed, with parameter estimation executed via the weighted ordinary least square method. Following
this adjustment, it becomes apparent that the score-driven model, based on the generalized gamma
distribution and its special cases fit, provides a more faithful depiction compared to their static coun-
terparts. A simulation study underscores that ignoring the autocorrelation structure leads to biased
performance measures within queueing systems with single and multiple servers. The number of cus-
tomers in the system, the busy periods of the servers, and the response times, exhibit higher means
and variances as well as heavier tails for the proposed dynamic arrivals model than for the standard
static model. By relying on a conventional static model, businesses risk making suboptimal decisions,
which could culminate in lost profits. Ultimately, this research underscores the economic impera-
tive of correctly modeling arrival dependencies, offering invaluable insights for process simulations,
optimization, and quality assessment.
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Abstract: Generalized Autoregressive Score (GAS) models are a class of observation-driven
time series models that employ the score to dynamically update time-varying parameters of the
underlying probability distribution. GAS models have been extensively studied and numerous
variants have been proposed in the literature to accommodate diverse data types and probability
distributions. This paper introduces the gasmodel package, which has been designed to facilitate the
estimation, forecasting, and simulation of a wide range of GAS models. The package provides a rich
selection of distributions, offers flexible options for specifying dynamics, and allows to incorporate ex-
ogenous variables. Model estimation utilizes the maximum likelihood method and the Hessian matrix.

Keywords: Generalized Autoregressive Score Models, Dynamic Conditional Score Models,
Score-Driven Models, R.

JEL Classification: C22, C87.

1 Introduction

The generalized autoregressive score (GAS) models, introduced by Creal et al. (2013) and Harvey
(2013), have emerged as a valuable and contemporary framework for time series modeling. These
models, also referred to as dynamic conditional score (DCS) models or score-driven models, offer
flexibility by accommodating various underlying probability distributions and time-varying parame-
ters. GAS models are observation-driven, effectively capturing the dynamic behavior of time-varying
parameters through the autoregressive term and the score, i.e., the gradient of the log-likelihood
function. Within the GAS framework, it is possible to formulate a wide range of dynamic models for
any type of data.

There are several packages and code available in R that handle GAS models. One notable pack-
age is GAS developed by Ardia et al. (2019), which provides functionality for both univariate and
multivariate GAS models. The current version, 0.3.4, supports 16 distributions. However, the model
specification in the GAS package is somewhat limited, only allowing for basic dynamics without
the inclusion of exogenous variables. Additionally, this package lacks distributions for certain more
specialized data types, such as circular, compositional, and ranking data. The package thus sup-
ports only a limited selection of GAS models found in the literature1. Another relevant R package is
betategarch by Sucarrat (2013), which deals specifically with the Beta-Skew-t-EGARCH model, a
GAS model for time-varying volatility based on the Student’s t-distribution. In Python, the PyFlux
library by Taylor (2018) deals with time series analysis and features various GAS models including
the Beta-Skew-t-EGARCH model, standard GAS models, GAS random walk models, GAS pairwise
comparison models, and GAS regression models. In Julia, the ScoreDrivenModels.jl package by
Bodin et al. (2020) provides a framework for standard GAS models. The Time Series Lab program
by Lit et al. (2021) is a stand-alone GUI application designed to model and forecast time series,
including standard GAS models, GAS pairwise comparison models, and GAS regression models. Ad-
ditional R, MATLAB, and Ox code for some specific GAS models, often associated with individual
research papers, can be found on the www.gasmodel.com website.

In this paper, we present the gasmodel package, which is designed to provide comprehensive
functionality that encompasses a wide range of GAS models documented in the existing literature. It

1For a more detailed comparison of the gasmodel and GAS packages, see Appendix A.
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Table 1: List of available distributions and their parametrizations. First parametrization is the
default.

Label Distribution Dimension Data Type Parametrizations
alaplace Asymmetric Laplace Univariate Real meanscale
bernoulli Bernoulli Univariate Binary prob
beta Beta Univariate Interval conc, meansize, meanvar
bisa Birnbaum–Saunders Univariate Duration scale
cat Categorical Multivariate Categorical worth
dirichlet Dirichlet Multivariate Compositional conc
dpois Double Poisson Univariate Count mean
exp Exponential Univariate Duration scale, rate
gamma Gamma Univariate Duration scale, rate
gengamma Generalized Gamma Univariate Duration scale, rate
geom Geometric Univariate Count mean, prob
laplace Laplace Univariate Real meanscale
mvnorm Multivariate Normal Multivariate Real meanvar
mvt Multivariate Student‘s t Multivariate Real meanvar
negbin Negative Binomial Univariate Count nb2, prob
norm Normal Univariate Real meanvar
pluce Plackett–Luce Multivariate Ranking worth
pois Poisson Univariate Count mean
skellam Skellam Univariate Integer meanvar, diff, meandisp
t Student‘s t Univariate Real meanvar
vonmises von Mises Univariate Circular meanconc
weibull Weibull Univariate Duration scale, rate
zigeom Zero-Inflated Geometric Univariate Count mean
zinegbin Zero-Inflated Negative Binomial Univariate Count nb2
zipois Zero-Inflated Poisson Univariate Count mean
ziskellam Zero-Inflated Skellam Univariate Integer meanvar, diff, meandisp

offers versatile model specification and core features available for the entire spectrum of implemented
distributions. The current version of the package, 0.5.1, offers a selection of 26 distributions, catering
to various univariate and multivariate data types such as binary, categorical, ranking, count, integer,
circular, interval, compositional, duration, and real data. A comprehensive list of these distributions is
provided in Table 1. Model specification within the package allows for flexible customization, enabling
users to incorporate different parametrizations, exogenous variables, joint and separate modeling of
exogenous variables and dynamics, higher score and autoregressive orders, custom and unconditional
initial values of time-varying parameters, fixed and bounded values of coefficients, and missing val-
ues. Model estimation is performed by the maximum likelihood method and the Hessian matrix.
Furthermore, the package offers a range of functionalities including forecasting, simulation, boot-
strapping, and assessment of parameter uncertainty. Comprehensive documentation is provided with
the package, offering details on each distribution and its corresponding parametrizations.

The gasmodel package is accessible on CRAN at cran.r-project.org/package=gasmodel.
Additionally, users can find the development version of the package on GitHub at github.com/
vladimirholy/gasmodel, providing them with the opportunity to report any bugs or issues they
encounter.

The rest of the paper is as follows. In Section 2, we outline the key characteristics of GAS models.
In Section 3, we present an overview of the gasmodel package. In Section 4, we present two case
studies demonstrating the practical application of the package. In Section 5, we discuss limitations
and customization. We conclude the paper in Section 6.

2 Generalized Autoregressive Score Models

2.1 Background

The concept of utilizing the score as a driving mechanism for dynamics in time series was inde-
pendently developed at both Vrije Universiteit Amsterdam and the University of Cambridge. At
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Figure 1: The annual number of articles containing phrase “generalized autoregressive score” or
“dynamic conditional score” from 2011 to 2022 according to Scopus.
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Figure 2: The subject area of articles containing phrase “generalized autoregressive score” or “dynamic
conditional score”" from 2011 to 2022 according to Scopus.

Vrije Universiteit Amsterdam, researchers established a comprehensive general methodology that en-
compasses various models driven by the score, known as the generalized autoregressive score (GAS)
models. The initial findings were presented in a working paper Creal et al. (2008), which was sub-
sequently published as Creal et al. (2013). At the University of Cambridge, the initial focus was on
a specific model that employed the Student’s t-distribution with dynamic volatility, named Beta-t-
(E)GARCH. This approach was introduced in a working paper Harvey and Chakravarty (2008). The
book by Harvey (2013) explores a variety of dynamic location and scale models driven by the score,
referring to them as dynamic conditional score (DCS) models. Both Creal et al. (2013) and Harvey
(2013) are widely recognized as seminal contributions to the literature on GAS models. More recently,
in order to reconcile different terminologies used in the literature, the term “score-driven models” has
also emerged as a synonymous label.

Figures 1 and 2 illustrate the continuous growth of the GAS literature, encompassing a wide
range of subject areas. The Scopus database reports 429 articles containing phrase “generalized
autoregressive score” or “dynamic conditional score”, as of December 31, 2022. The website www.
gasmodel.com lists 288 articles, working papers, and books on GAS models, as of September 28,
2022.
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2.2 Basic Notation

The goal is to model time series yt, t = 1, . . . , T , which can be univariate or multivariate, continuous
or discrete. Let ft denote the vector of time-varying parameters and g the vector of static parameters.
Let p(yt|ft, g) denote the density function in the case of a continuous variable, or the probability mass
function in the case of a discrete variable.

Constructing a model involves two main components: selecting an appropriate distribution and
specifying the dynamics of its time-varying parameters.

2.3 Score as the Key Ingredient

In GAS models, the key ingredient driving the dynamics of ft is the score, i.e., the gradient of the
log-likelihood function,

∇(yt, ft) =
∂ ln p(yt|ft, g)

∂ft
. (1)

The score has zero expected value and its variance is known as the Fisher information,

I(ft) = E

[(
∂ ln p(yt|ft, g)

∂ft

)2
∣∣∣∣∣ft, g

]
. (2)

The score quantifies the discrepancy between the fitted distribution, determined by the parameter
ft, and a particular observation yt. As such, it can be employed as a correction term following the
realization of an observation. When the score is positive, it suggests that the parameter of interest
should be increased to better accommodate the observed data. Conversely, when the score is negative,
decreasing the parameter would help in aligning the distribution with the observation. When the
score is zero, it indicates that the current parameter value represents the optimal fit for the specific
observation at hand.

An advantage of the score is that it takes into account the shape of the distribution. To illustrate
this point, Creal et al. (2013) consider two GARCH models: one based on the normal distribution
and another based on the Student’s t-distribution. Now, imagine an extreme observation occurs.
Due to its heavier tails, the Student’s t-distribution assigns a higher probability to such extreme
observations compared to the normal distribution. Crucially, this distinction is also mirrored in the
score. Specifically, when assuming the normal distribution, the score for the extreme observation will
have a significantly higher absolute value compared to when assuming the Student’s t-distribution.
The dynamics can thus reflect the shape of the distribution.

The simple difference between expectation and realization, commonly used as a correction term
in various time series models, may not always be effective for distributions with specific support.
Harvey et al. (2019) highlight this limitation in the context of circular time series. To illustrate this,
let us suppose the expected value of an observation is 0.01, but the actual observation turns out to
be 6.27. Although the numerical difference between these values is substantial, their corresponding
angles are very similar as values 0 and 2π represent the exact same angle. This discrepancy highlights
the inadequacy of using a simple difference metric. On the other hand, the score respects the circular
nature of the data. For instance, when working with the von Mises distribution characterized by a
time-varying location parameter µt and a static concentration parameter ν, the score for µt is equal
to ν sin(yt − µt). By employing the sine function, the score accounts for the circularity of the data
and ensures that the angular differences are appropriately considered during the analysis.

2.4 Dynamics of Time Varying Parameters

In GAS models, time-varying parameters ft follow the recursion

ft = ω +
P∑

j=1

αjS(ft−j)∇(yt−j , ft−j) +
Q∑

k=1

φkft−k, (3)
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where ω is a vector of constants, αj are score parameters, φk are autoregressive parameters, and S(ft)
is a scaling function for the score. In the majority of empirical studies, it is common practice to set
the score order P and the autoregressive order Q to 1. Furthermore, one of three scaling functions
is typically chosen: the unit function, the inverse of the Fisher information, or the square root of
the inverse of the Fisher information. When the latter is used, the scaled score has unit variance.
However, the choice of the scaling function is not always a straightforward task and is closely tied to
the underlying distribution. For a detailed discussion on this matter, see Holý (2020).

The dynamics of the model can be expanded to incorporate exogenous variables as

ft = ω +
M∑

i=1

βixti +
P∑

j=1

αjS(ft−j)∇(yt−j , ft−j) +
Q∑

k=1

φkft−k, (4)

where βi are regression parameters associated with the exogenous variables xti. Alternatively, a
different model can be obtained by defining the recursion in the fashion of regression models with
dynamic errors as

ft = ω +
M∑

i=1

βixti + et, et =
P∑

j=1

αjS(ft−j)∇(yt−j , ft−j) +
Q∑

k=1

φket−k. (5)

The key distinction between the two models lies in the impact of exogenous variables on ft. Specif-
ically, in the latter model formulation, the exogenous variables influence solely the concurrent pa-
rameter ft, while in the former model, they additionally affect all future parameters through the
autoregressive term. In a stationary model without exogenous variables, the two specifications are
equivalent, although with differently parametrized intercept. When numerically finding the values of
the parameters, the latter model can converge faster as ω is “disconnected” from φk.

Other model specifications can be obtained by imposing various restrictions on ω, βi, αj , or φk.
In addition, it is possible to have different orders P and Q for individual parameters when multiple
parameters are time-varying. Furthermore, the set of exogenous variables can also vary for different
parameters.

The recursive nature of ft necessitates the initialization of the first few elements f1, . . . , fmax{P,Q}.
A sensible approach is to set them to the long-term value (in the case of a stationary model omitting
exogenous variables),

f̄ =





1

1−∑Q
k=1 φk

in model (4),

ω in model (5).
(6)

Alternatively, if additional information is available, the initial elements can be set to a specified value.

2.5 Maximum Likelihood Estimation

GAS models can be straightforwardly estimated by the maximum likelihood method. Let θ =
(ω, β1, . . . , βM , α1, . . . , αP , φ1, . . . , φQ, g)

′ denote the vector of all parameters to be estimated. The
estimate θ̂ is then obtained by maximizing the full log-likelihood as

θ̂ ∈ argmax
θ

T∑

t=1

ln p(yt|ft, g). (7)

Alternatively, the conditional log-likelihood can be maximized, which excludes the initial max{P,Q}
terms. The maximization of the log-likelihood function can be accomplished using various general-
purpose algorithms designed for solving nonlinear optimization problems.

The standard errors of the estimated parameters can be obtained using the standard maximum
likelihood asymptotics. Under appropriate regularity conditions, the maximum likelihood estimator
θ̂ is consistent and asymptotically normal. Specifically, it satisfies:

√
T
(
θ̂ − θ0

) d→ N
(
0,−H−1

)
, (8)

1:5



where θ0 represents the true parameter values and H denotes the asymptotic Hessian of the log-
likelihood, defined as

H = plim
T→∞

1

T

T∑

t=1

∂2 ln p(yt|ft, g)
∂θ0∂θ′0

. (9)

In finite samples, the asymptotic Hessian H can be approximated by the empirical Hessian of
the log-likelihood evaluated at the estimated parameter values θ̂. This empirical Hessian provides an
estimate of the curvature of the log-likelihood function and serves as a practical substitute for the
true asymptotic Hessian when finite-sample inference is required.

The conditions for the consistency and asymptotic normality of the estimator depend on the spe-
cific distributional assumptions and dynamics of the model and need to be verified on a case-by-case
basis. Each distribution may have its own specific characteristics and requirements for maximum like-
lihood estimation. For the general asymptotic theory regarding GAS models and maximum likelihood
estimation, see Blasques et al. (2014), Blasques et al. (2018), and Blasques et al. (2022b).

2.6 Theoretical and Empirical Properties

The use of the score for updating time-varying parameters is optimal in an information theoretic
sense. For an investigation of the optimality properties of GAS models, see Blasques et al. (2015)
and Blasques et al. (2021).

Generally, the GAS models perform quite well when compared to alternatives, including
parameter-driven models. For a comparison of the GAS models to alternative models, see Koopman
et al. (2016) and Blazsek and Licht (2020).

2.7 Notable Models

The GAS class includes many well-known econometric models, such as the generalized autoregressive
conditional heteroskedasticity (GARCH) model of Bollerslev (1986) based on the normal distribu-
tion, the autoregressive conditional duration (ACD) model of Engle and Russell (1998) based on the
exponential distribution, and the count model of Davis et al. (2003) based on the Poisson distribution.

More recently, a variety of novel score-driven models has been proposed, such as the Beta-t-
(E)GARCH model of Harvey and Chakravarty (2008), a multivariate Stu- dent’s t volatility model
of Creal et al. (2011), a Dirichlet model of Calvori et al. (2013), the GRAS copula model of De Lira
Salvatierra and Patton (2015), the realized Wishart-GARCH model of Hansen et al. (2016), a bimodal
Birnbaum–Saunders model of Fonseca and Cribari-Neto (2018), a Skellam model of Koopman et al.
(2018), a circular model of Harvey et al. (2019), a Bradley–Terry model of Gorgi et al. (2019), a
bivariate Poisson model of Koopman and Lit (2019), a censoring model of Harvey and Ito (2020),
a zero-inflated negative binomial model of Blasques et al. (2022a), a double Poisson mixture model
of Holý and Tomanová (2022), a ranking model of Holý and Zouhar (2022), and a Tobit model of
Harvey and Liao (2023).

For an overview of various GAS models, see Artemova et al. (2022) and Harvey (2022).

3 Features of the Package

3.1 Model Specification and Estimation

The heart of the gasmodel package is the gas() function, which serves as a powerful tool for
estimating both univariate and multivariate GAS models. This function offers extensive flexibility
with its wide range of arguments:

R> gas(y, x = NULL, distr, param = NULL, scaling = "unit", regress = "joint",
+ p = 1L, q = 1L, par_static = NULL, par_link = NULL, par_init = NULL,
+ lik_skip = 0L, coef_fix_value = NULL, coef_fix_other = NULL,
+ coef_fix_special = NULL, = NULL, coef_bound_upper = NULL, coef_start = NULL,
+ optim_function = wrapper_optim_nloptr, optim_arguments = list(opts =
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+ list(algorithm = "NLOPT_LN_NELDERMEAD", xtol_rel = 0, maxeval = 1e+06)),
+ hessian_function = wrapper_hessian_stats, hessian_arguments = list(),
+ print_progress = FALSE)

However, at its core, it only requires two essential inputs: a time series y and a distribution distr.
All other arguments come with default values, ensuring that the function can be readily used even
with minimal specifications.

A time series y can be represented as either a vector of length T or a T × 1 matrix in the case
of univariate series. In the multivariate case, it should be a T × N matrix, where N denotes the
dimension of the series.

Additionally, there is an option to include exogenous variables x. When incorporating a single
variable that is common for all time-varying parameters, a numeric vector of length T can be provided.
For multiple variables that are common for all time-varying parameters, a T ×M numeric matrix
can be used. In cases where there are individual variables for each time-varying parameter, a list of
numeric vectors or matrices following the aforementioned formats can be utilized. To control whether
the variables are included in the dynamics equation together, as in (4), the arguemnt regress can
be set to "joint". Alternatively, if separate equations for dynamics and regression are preferred, as
in (5), regress can be set to "sep".

The selection of the distribution in the gas() function is determined by the distr argument.
Some distributions have multiple parametrizations available, which can be specified using the param
argument. It is important to note that certain parameters may have restrictions imposed on them,
and these restrictions should be considered in the model dynamics. However, it may not always
be possible to satisfy these restrictions, or it may require additional constraints on the coefficients
controlling the dynamics. To handle parameter restrictions, it is generally recommended to use a link
function that transforms the parameters into unrestricted real numbers. By default, the logarithmic
function is applied to time-varying parameters in the interval (0,∞), while the logistic function is
used for time-varying parameters in the interval (0, 1). The static parameters are unaffected. This
behavior can be modified by the par_link argument, which takes the form of a logical vector. The
TRUE values indicate that the logarithmic/logistic link is applied to the corresponding parameters.
The list of available distributions and their parametrizations can be obtained using the distr()
function. Alternatively, Table 1 provides the relevant information.

The determination of time-varying and static parameters is guided by the par_static argument,
which takes the form of a logical vector. The TRUE values indicate static parameters. By default,
the first parameter of the distribution is considered time-varying, while the remaining parameters
are treated as static. The score order P and the autoregressive order Q are selected by the p and q
arguments respectively. These arguments can take either a single non-negative integer or a vector of
non-negative integers when different orders are required for different parameters.

The choice of scaling function for the score is determined by the scaling argument. The
supported scaling options include the unit scaling (scaling = "unit"), the scaling based on the
inverse of the Fisher information matrix (scaling = "fisher_inv"), and the scaling based on
the inverse square root of the Fisher information matrix (scaling = "fisher_inv_sqrt"). The
latter two scalings utilize the Fisher information for the time-varying parameters exclusively. If
the preference is to use the full Fisher information matrix, which includes both time-varying and
static parameters, the "full_fisher_inv" or "full_fisher_inv_sqrt" scaling options can be se-
lected. For the individual Fisher information associated with each parameter, the "diag_fisher_inv"
and "diag_fisher_inv_sqrt" scaling options are available. It should be noted that when the
parametrization is orthogonal (see distr()), there are no differences among these scaling variants.

The first max{P,Q} initial values of the time-varying parameters are by default set to their long-
term values (6). It is also possible to assign specific values to the initial parameters using the par_init
argument. During the maximization of the log-likelihood, the initial values can be included, resulting
in the computation of the full likelihood, which is the default option. Alternatively, the initial values
can be omitted, leading to the computation of the conditional likelihood by specifying lik_skip =
NULL. To exclude a specified number of first few values from the likelihood calculation, a non-negative
integer can be provided to lik_skip.
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Restrictions on estimated coefficients can be enforced using several arguments. The
coef_fix_value argument allows coefficients to be fixed at specific values, using a numeric vector
where NA values indicate coefficients that are not fixed. To set coefficients as linear combinations
of other coefficients, the coef_fix_other argument can be used. It requires a square matrix with
multiples of the estimated coefficients, which are added to the fixed coefficients. A coefficient given
by row is fixed on coefficient given by column. By this logic, all rows corresponding to the estimated
coefficients should contain only NA values. All columns corresponding to the fixed coefficients should
also contain only NA values. For convenience, common coefficient structures can be specified by name
using the coef_fix_special argument. Examples include panel_structure, zero_sum_intercept,
and random_walk. Section 4.2 provides demonstrations of their usage. To impose lower and upper
bounds on coefficients, the coef_bound_lower and coef_bound_upper arguments can be utilized,
respectively.

The coef_start argument allows for the specification of the starting values of coefficients used in
the optimization process. If no values are provided, the starting values are automatically selected from
a small grid of values. To define the optimization function, the optim_function argument is used.
The function should be formatted according to the required specifications. Two wrapper functions
are available for convenience: wrapper_optim_stats(), which utilizes the optim() function from
the stats package, and wrapper_optim_nloptr(), which utilizes the nloptr() function from the
nloptr package. Additional arguments can be passed to the optimization function as a list using
the optim_arguments argument. Similarly, the Hessian matrix can be computed using the function
specified in the hessian_function argument. Three wrappers are available: wrapper_hessian_stats
for the optimHess() function from the stats package, wrapper_hessian_pracma for the hessian()
function from the pracma package, and wrapper_hessian_numderiv for the hessian() function from
the numDeriv package. Additional arguments for the Hessian function can be passed as a list using
the hessian_arguments argument. If desired, a detailed computation report can be continuously
printed by setting the print_progress argument to TRUE.

The function returns a list of S3 class gas. This list consists of five components: data, model,
control, solution, and fit, each of which is also a list. The data component contains the supplied
time series and exogenous variables. The model component contains the specification of the model
structure and size. The control component contains the settings that control the optimization and
Hessian computation. The solution component contains the raw results of the optimization and
Hessian computation. Lastly, and most importantly, the fit component contains comprehensive es-
timation results. When an object of the gas class is printed, it provides a concise summary similar to
the summary.lm() function from the stats package (refer to Sections 4.1 and 4.2 for examples). Var-
ious generic functions can be applied to gas objects, including summary(), plot(), coef(), vcov(),
fitted(), residuals(), logLik(), AIC(), BIC(), and confint().

3.2 Forecasting

Forecasting of GAS models is performed using the gas_forecast() function. This function offers
two forecasting methods. The mean_path method filters the time-varying parameters based on zero
score and then generates the mean of the time series. The simulated_paths method repeatedly sim-
ulates time series, simultaneously filters time-varying parameters, and then estimates mean, standard
deviation, and quantiles. See Blasques et al. (2016b) for more details on this method.

To use the gas_forecast() function, an estimated GAS model is required. Typically, the output
of the gas() function (a gas object) can be supplied via the gas_object argument:

R> gas_forecast(gas_object, method = "mean_path", t_ahead = 1L, x_ahead = NULL,
+ rep_ahead = 1000L, quant = c(0.025, 0.975))

Alternatively, multiple arguments including the data, model specification, and estimated coeffi-
cients can be manually specified:

R> gas_forecast(method = "mean_path", t_ahead = 1L, x_ahead = NULL,
+ rep_ahead = 1000L, quant = c(0.025, 0.975), y, x = NULL, distr, param = NULL,
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+ scaling = "unit", regress = "joint", p = 1L, q = 1L, par_static = NULL,
+ par_link = NULL, par_init = NULL, coef_est = NULL)

The forecasting method is determined by the method argument. The number of observations to
forecast can be specified using the t_ahead argument. If exogenous variables are utilized, their values
must be provided for the forecasted period using the x_ahead argument. For the simulated_paths
method, the number of simulations can be controlled using the rep_ahead argument, and the desired
quantiles can be specified using the quant argument.

The function returns a list of S3 class gas_forecast with three components: data, model,
forecast. The data component contains the supplied time series and exogenous variables. The
model component contains the specification of the model structure and size. The forecast compo-
nent contains the mean of the forecasted observations, along with standard deviations and quantiles
if the simulated_paths method is used. Available generic functions are summary() and plot().

3.3 Simulation

Basic simulation of GAS models is handled by the gas_simulate() function.
The gas_simulate() function requires suppling the coefficients using the coef_est argument and

specifying the model using arguments distr, param, scaling, regress, p, q, par_static, par_link,
par_init, and, in the case of multivariate models, the dimension n:

R> gas_simulate(t_sim = 1L, x_sim = NULL, distr, param = NULL, scaling = "unit",
+ regress = "joint", n = NULL, p = 1L, q = 1L, par_static = NULL,
+ par_link = NULL, par_init = NULL, coef_est = NULL)

Alternatively, only a gas object containing a model estimated by the gas() function can be
provided using the gas_object argument:

R> gas_simulate(gas_object, t_sim = 1L, x_sim = NULL)

The number of observations to simulate can be specified using the t_sim argument. If exoge-
nous variables are utilized, their values must be provided for the simulation sample using the x_sim
argument.

The function returns a list of S3 class gas_simulate with three components: data, model,
simulation. The data component contains the exogenous variables, if supplied. The model com-
ponent contains the specification of the model structure and size. The simulation component con-
tains the simulated time series, time-varying parameters, and scores. Available generic functions are
summary() and plot().

3.4 Bootstrapping

To compute standard deviations and confidence intervals of the estimated coefficients in GAS mod-
els, the package provides the gas_bootstrap() function. This function employs the bootstrapping
technique to estimate the uncertainty associated with the coefficients. The parametric method in-
volves repeatedly simulating time series using the parametric model and re-estimating the coefficients
based on the simulated data. The simple_block, moving_block, and stationary_block methods
execute the circular block bootstrap with fixed non-overlapping blocks, fixed overlapping blocks, and
randomly sized overlapping blocks, respectively.

The gas_bootstrap() function requires an estimated GAS model with optimization settings as
inputs. The best way is to simply supply a gas object to the gas_object argument:

R> gas_bootstrap(gas_object, method = "parametric", rep_boot = 1000L,
+ block_length = NULL, quant = c(0.025, 0.975), parallel_function = NULL,
+ parallel_arguments = list())

Alternatively, the individual arguments including the data, model specification, estimated coeffi-
cients, and optimization setting can be provided:
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R> gas_bootstrap(method = "parametric", rep_boot = 1000L, block_length = NULL,
+ quant = c(0.025, 0.975), y, x = NULL, distr, param = NULL, scaling = "unit",
+ regress = "joint", p = 1L, q = 1L, par_static = NULL, par_link = NULL,
+ par_init = NULL, lik_skip = 0L, coef_fix_value = NULL, coef_fix_other = NULL,
+ coef_fix_special = NULL, coef_bound_lower = NULL, coef_bound_upper = NULL,
+ coef_est = NULL, optim_function = wrapper_optim_nloptr, optim_arguments = list(opts =
+ list(algorithm = "NLOPT_LN_NELDERMEAD", xtol_rel = 0, maxeval = 1e+06)),
+ parallel_function = NULL, parallel_arguments = list())

The bootstrapping method is determined by the method argument. The number of bootstrap
samples is specified by the rep_boot argument. For the simple_block and moving_block methods,
the fixed size of blocks must be specified by the block_length argument. For the stationary_block
method, the mean size of blocks must be specified by the block_length argument. The desired
quantiles can be specified using the quant argument. As boostrapping can be computationally very
demanding, parallelization is achievable by employing the parallel_function argument, which ex-
pects a function similar to lapply(), allowing the application of a function over a list. Two wrapper
functions are available for convenience: wrapper_parallel_multicore(), which utilizes the multi-
core parallelization functionality from the parallel package, and wrapper_parallel_snow(), which
utilizes the snow parallelization functionality from the parallel package. Additional arguments
can be passed to the parallelization function as a list using the parallel_arguments argument.
If parallel_function is set to NULL, no parallelization is employed and lapply() is used.

The function returns a list of S3 class gas_bootstrap with three components: data, model,
bootstrap. The data component contains the supplied time series and exogenous variables. The
model component contains the specification of the model structure and size. The bootstrap com-
ponent contains the full set of bootstrapped coefficients as well as the basic statistics derived from
them. Available generic functions are summary(), plot(), coef(), and vcov().

3.5 Filtered Parameters

The filtered time-varying parameters of an estimated model can be directly obtained from the output
of the gas() function. However, to investigate the uncertainty associated with these parameters, the
gas_filter() function can be used. This function also supports forecasting and provides two meth-
ods. The simulated_coefs method calculates a path of time-varying parameters for each simulated
coefficient set, assuming asymptotic normality with a given variance-covariance matrix. See Blasques
et al. (2016b) for more details on this method. The given_coefs methods computes a path of time-
varying parameters for each supplied coefficient set. Suitable sets of coefficients can be obtained, for
example, through the use of the gas_bootstrap() function.

An estimated GAS model can be supplied as a gas object to the gas_object argument:

R> gas_filter(gas_object, method = "simulated_coefs", coef_set = NULL,
+ rep_gen = 1000L, t_ahead = 0L, x_ahead = NULL, rep_ahead = 1000L,
+ quant = c(0.025, 0.975))

Alternatively, the individual arguments including the data, model specification, and estimated
coefficients with variance-covariance matrix can be provided:

R> gas_filter(method = "simulated_coefs", coef_set = NULL, rep_gen = 1000L,
+ t_ahead = 0L, x_ahead = NULL, rep_ahead = 1000L, quant = c(0.025, 0.975), y,
+ x = NULL, distr, param = NULL, scaling = "unit", regress = "joint", p = 1L,
+ q = 1L, par_static = NULL, par_link = NULL, par_init = NULL,
+ coef_fix_value = NULL, coef_fix_other = NULL, coef_fix_special = NULL,
+ coef_bound_lower = NULL, coef_bound_upper = NULL, coef_est = NULL,
+ coef_vcov = NULL)

The method argument determines the approach for capturing uncertainty. For the given_coefs
method, the coef_set argument in the form a numeric matrix of coefficient sets in rows must be
provided. For the simulated_coefs method, the rep_gen argument representing the number of
generated coefficient sets must be provided. If forecasting is desired, the number of observations to
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forecast can be specified using the t_ahead argument, values of exogenous variable for the forecasted
period can be provided using the x_ahead argument, and the number of simulation repetitions in the
forecasted sample can be controlled using the rep_ahead argument. The desired quantiles can be
specified using the quant argument.

The function returns a list of S3 class gas_filter with three components: data, model, filter.
The data component contains the supplied time series and exogenous variables. The model component
contains the specification of the model structure and size. The filter component contains in-sample
and possibly out-of-sample means, standard deviations, and quantiles of the time-varying parameters
and scores. Available generic functions are summary() and plot().

3.6 Supplementary Functions for Distributions

The distr() function can be utilized to retrieve a list of distributions and their parametrizations
supported by the gas() function. To narrow down the output and focus on specific distributions,
arguments such as filter_distr, filter_param, filter_type, filter_dim, filter_orthog, and
filter_default can be specified. The output is in the form of a data.frame with columns provid-
ing information on the distributions such as the data type, dimension, orthogonality, and default
parameterization.

To work with individual distributions, the gasmodel package offeres several functions. The
distr_density() function computes the density of a given distribution, the distr_mean() func-
tion computes the mean of a given distribution, the distr_var() function computes the variance
of a given distribution, the distr_score() function computes the score of a given distribution,
the distr_fisher() function computes the Fisher information of a given distribution, and the
distr_random() function generates random observations from a given distribution. Each of these
function can be supplied with arguments specifying the distribution and the parametrization, namely
distr, param, par_link. It is important to note that while the gas() function may automatically
set the logarithmic/logistic link for time-varying parameters, it must be set manually for the distri-
bution functions. Additionaly, a vector of parameter values must be provided to the f argument.
Some functions may also require an observation to be provided to the y argument. For detailed usage
instructions, please refer to the documentation for each individual function.

4 Case Studies

4.1 Bookshop Orders

In the first case study, we demonstrate the estimation of a univariate GAS model, complemented by
bootstrapping and simulation techniques.

We loosely follow Tomanová and Holý (2021) and analyze the timing of orders from a Czech
antiquarian bookshop. Besides seasonality and diurnal patterns, one would expect the times of
orders to be independent of each other. However, this is not the case and we use a GAS model to
capture dependence between the times of orders.

A strand of financial econometrics is devoted to analyzing the timing of transactions by the so-
called autoregressive conditional duration (ACD) model introduced by Engle and Russell (1998). For
a textbook treatment of such financial point processes, see e.g., Hautsch and Huang (2012).

Let us prepare the analyzed data. We use the bookshop_sales dataset containing times of orders
from June 8, 2018 to December 20, 2018. We calculate differences of subsequent times, i.e., durations.
To avoid zero durations, we set them to 0.5 second.

R> library("dplyr")
R> library("tidyr")
R> library("ggplot2")
R> library("hms")
R> library("gasmodel")

R> data("bookshop_sales")
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R> data_dur <- bookshop_sales %>%
+ as_tibble() %>%
+ rename(datetime = time) %>%
+ mutate(date = as.Date(datetime)) %>%
+ mutate(time = as_hms(datetime)) %>%
+ mutate(duration = as.numeric(datetime - lag(datetime)) / 60) %>%
+ mutate(duration = recode(duration, "0" = 0.5)) %>%
+ drop_na()

We adjust the observed durations for diurnal pattern and extract the time series to be analyzed.

R> model_spl <- smooth.spline(as.vector(data_dur$time), data_dur$duration, df = 10)

R> data_dur <- data_dur %>%
+ mutate(duration_spl = predict(model_spl, x = as.vector(time))$y) %>%
+ mutate(duration_adj = duration / duration_spl)

R> y <- data_dur$duration_adj

The following distributions are available for our data type. We utilize the generalized gamma
family.

R> distr(filter_type = "duration", filter_dim = "uni")

distr_title param_title distr param type dim orthog default
6 Birnbaum-Saunders Scale bisa scale duration uni TRUE TRUE
10 Exponential Rate exp rate duration uni TRUE FALSE
11 Exponential Scale exp scale duration uni TRUE TRUE
12 Gamma Rate gamma rate duration uni FALSE FALSE
13 Gamma Scale gamma scale duration uni FALSE TRUE
14 Generalized Gamma Rate gengamma rate duration uni FALSE FALSE
15 Generalized Gamma Scale gengamma scale duration uni FALSE TRUE
31 Weibull Rate weibull rate duration uni FALSE FALSE
32 Weibull Scale weibull scale duration uni FALSE TRUE

First, we estimate the model based on the exponential distribution. By default, the logarithmic
link for the time-varying scale parameter is adopted. In this particular case, the Fisher information
is constant and the three scalings are therefore equivalent.

R> est_exp <- gas(y = y, distr = "exp")
R> est_exp

GAS Model: Exponential Distribution / Scale Parametrization / Unit Scaling

Coefficients:
Estimate Std. Error Z-Test Pr(>|Z|)

log(scale)_omega -0.00085202 0.00114896 -0.7416 0.4584
log(scale)_alpha1 0.04888439 0.00650562 7.5142 5.727e-14 ***
log(scale)_phi1 0.96343265 0.00910508 105.8126 < 2.2e-16 ***
---
Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

Log-Likelihood: -5608.518, AIC: 11223.04, BIC: 11243.01

Second, we estimate the model based on the Weibull distribution. Compared to the exponential
distribution, it has an additional shape parameter. By default, the first parameter is assumed time-
varying while the remaining are assumed static. In our case, the model features the time-varying
scale parameter with the constant shape parameter. However, it is possible to modify this behavior
using the par_static argument.

R> est_weibull <- gas(y = y, distr = "weibull")
R> est_weibull
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GAS Model: Weibull Distribution / Scale Parametrization / Unit Scaling

Coefficients:
Estimate Std. Error Z-Test Pr(>|Z|)

log(scale)_omega -0.0019175 0.0013552 -1.4149 0.1571
log(scale)_alpha1 0.0562619 0.0082010 6.8604 6.867e-12 ***
log(scale)_phi1 0.9622643 0.0102230 94.1278 < 2.2e-16 ***
shape 0.9442209 0.0094299 100.1300 < 2.2e-16 ***
---
Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

Log-Likelihood: -5591.442, AIC: 11190.88, BIC: 11217.51

Third, we estimate the model based on the gamma distribution. This is another generalization of
the exponential distribution with an additional shape parameter.

R> est_gamma <- gas(y = y, distr = "gamma")
R> est_gamma

GAS Model: Gamma Distribution / Scale Parametrization / Unit Scaling

Coefficients:
Estimate Std. Error Z-Test Pr(>|Z|)

log(scale)_omega 0.0013296 0.0013395 0.9926 0.3209
log(scale)_alpha1 0.0518896 0.0071672 7.2399 4.491e-13 ***
log(scale)_phi1 0.9634327 0.0093853 102.6532 < 2.2e-16 ***
shape 0.9420850 0.0153854 61.2325 < 2.2e-16 ***
---
Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

Log-Likelihood: -5601.735, AIC: 11211.47, BIC: 11238.1

Fourth, we estimate the model based on the generalized gamma distribution. The generalized
gamma distribution encompasses all three aforementioned distributions as special cases.

R> est_gengamma <- gas(y = y, distr = "gengamma")
R> est_gengamma

GAS Model: Generalized Gamma Distribution / Scale Parametrization / Unit Scaling

Coefficients:
Estimate Std. Error Z-Test Pr(>|Z|)

log(scale)_omega -0.049164 0.018903 -2.6009 0.009299 **
log(scale)_alpha1 0.069834 0.011670 5.9841 2.176e-09 ***
log(scale)_phi1 0.951761 0.015024 63.3493 < 2.2e-16 ***
shape1 1.764362 0.150759 11.7032 < 2.2e-16 ***
shape2 0.682971 0.033690 20.2723 < 2.2e-16 ***
---
Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

Log-Likelihood: -5562.092, AIC: 11134.18, BIC: 11167.47

By comparing the Akaike information criterion (AIC), we find that the most general model, i.e., the
one based on the generalized gamma distribution, is the most suitable. For this purpose, we use generic
function AIC(). Alternatively, the AIC of an estimated model is stored in est_gengamma$fit$aic.

R> AIC(est_exp, est_weibull, est_gamma, est_gengamma)

df AIC
est_exp 3 11223.04
est_weibull 4 11190.88
est_gamma 4 11211.47
est_gengamma 5 11134.18
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Figure 3: Time-varying parameters based on the generalized gamma model.

Let us take a look on the time-varying parameters of the generalized gamma model (Figure 3).

R> plot(est_gengamma)

We can see a slight negative trend in time-varying parameters. We can try including a trend as
an exogenous variable for all four considered distributions.

R> x <- as.integer(data_dur$date) - as.integer(data_dur$date[1])

R> est_exp_tr <- gas(y = y, x = x, distr = "exp", reg = "sep")
R> est_exp_tr

GAS Model: Exponential Distribution / Scale Parametrization / Unit Scaling

Coefficients:
Estimate Std. Error Z-Test Pr(>|Z|)

log(scale)_omega 0.29683416 0.04509203 6.5829 4.615e-11 ***
log(scale)_beta1 -0.00304957 0.00037137 -8.2118 < 2.2e-16 ***
log(scale)_alpha1 0.05401728 0.00802442 6.7316 1.678e-11 ***
log(scale)_phi1 0.91358230 0.02146703 42.5575 < 2.2e-16 ***
---
Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

Log-Likelihood: -5583.723, AIC: 11175.45, BIC: 11202.08

R> est_weibull_tr <- gas(y = y, x = x, distr = "weibull", reg = "sep")
R> est_weibull_tr

GAS Model: Weibull Distribution / Scale Parametrization / Unit Scaling

Coefficients:
Estimate Std. Error Z-Test Pr(>|Z|)

log(scale)_omega 0.26955739 0.04763575 5.6587 1.525e-08 ***
log(scale)_beta1 -0.00302892 0.00039014 -7.7638 8.244e-15 ***
log(scale)_alpha1 0.06215424 0.00992563 6.2620 3.801e-10 ***
log(scale)_phi1 0.90950196 0.02399584 37.9025 < 2.2e-16 ***
shape 0.94858384 0.00949927 99.8586 < 2.2e-16 ***
---
Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

Log-Likelihood: -5569.405, AIC: 11148.81, BIC: 11182.1

R> est_gamma_tr <- gas(y = y, x = x, distr = "gamma", reg = "sep")
R> est_gamma_tr
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GAS Model: Gamma Distribution / Scale Parametrization / Unit Scaling

Coefficients:
Estimate Std. Error Z-Test Pr(>|Z|)

log(scale)_omega 0.35024097 0.04910603 7.1323 9.868e-13 ***
log(scale)_beta1 -0.00304957 0.00038142 -7.9954 1.292e-15 ***
log(scale)_alpha1 0.05698059 0.00874363 6.5168 7.182e-11 ***
log(scale)_phi1 0.91358230 0.02204841 41.4353 < 2.2e-16 ***
shape 0.94799429 0.01549052 61.1983 < 2.2e-16 ***
---
Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

Log-Likelihood: -5578.303, AIC: 11166.61, BIC: 11199.89

R> est_gengamma_tr <- gas(y = y, x = x, distr = "gengamma", reg = "sep")
R> est_gengamma_tr

GAS Model: Generalized Gamma Distribution / Scale Parametrization / Unit Scaling

Coefficients:
Estimate Std. Error Z-Test Pr(>|Z|)

log(scale)_omega -0.70489163 0.19283438 -3.6554 0.0002568 ***
log(scale)_beta1 -0.00292746 0.00039123 -7.4827 7.280e-14 ***
log(scale)_alpha1 0.08164957 0.01387329 5.8854 3.971e-09 ***
log(scale)_phi1 0.87684184 0.03506612 25.0054 < 2.2e-16 ***
shape1 1.76342697 0.15253550 11.5608 < 2.2e-16 ***
shape2 0.68568220 0.03426457 20.0114 < 2.2e-16 ***
---
Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

Log-Likelihood: -5541.097, AIC: 11094.19, BIC: 11134.14

The trend variable is significant in all cases. The AIC also confirms improvement of the fit.

R> AIC(est_exp_tr, est_weibull_tr, est_gamma_tr, est_gengamma_tr)

df AIC
est_exp_tr 4 11175.45
est_weibull_tr 5 11148.81
est_gamma_tr 5 11166.61
est_gengamma_tr 6 11094.19

Note that the time-varying parameters returned by the gas() function include the effect of ex-
ogenous variables. By using the plot() function, the now modeled trend can be clearly seen (Figure
4).

R> plot(est_gengamma_tr)

To assess the suitability of standard deviations based on asymptotics for our finite sample, we
employ the gas_bootstrap() function. This function conducts a parametric bootstrap, allowing us
to calculate standard errors and quantiles. It’s important to note that this could be computationally
very intensive, depending on the number of repetitions, the quantity of observations, the complex-
ity of the model structure, and the optimizer used. The function supports parallelization through
arguments parallel_function and parallel_arguments. For example, for the snow parallelization
functionality with 4 cores, you can call gas_bootstrap(est_gengamma_tr, parallel_function =
wrapper_parallel_snow, parallel_arguments = list(spec = 4)).

R> set.seed(42)
R> boot_gengamma_tr <- gas_bootstrap(est_gengamma_tr, method = "parametric")
R> boot_gengamma_tr
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Figure 4: Time-varying parameters based on the generalized gamma model with trend.

−1

0

1

2

log(scale)_omega log(scale)_beta1 log(scale)_alpha1 log(scale)_phi1 shape1 shape2
Coefficient

C
oe

ffi
ci

en
t V

al
ue

Bootstrapped Coefficients

Figure 5: Boxplot of bootstrapped coefficients based on the generalized gamma model with trend.

GAS Model: Generalized Gamma Distribution / Scale Parametrization / Unit Scaling

Method: Parametric Bootstrap

Number of Bootstrap Samples: 1000

Bootstrapped Coefficients:
Original Mean Std. Error P-Value 2.5% 97.5%

log(scale)_omega -0.704891626 -0.705226357 0.1980063054 0 -1.110703445 -0.34772409
log(scale)_beta1 -0.002927462 -0.002932047 0.0003883289 0 -0.003698968 -0.00217132
log(scale)_alpha1 0.081649573 0.081648774 0.0116918758 0 0.059179321 0.10575927
log(scale)_phi1 0.876841843 0.871223702 0.0297172317 0 0.806282230 0.91973863
shape1 1.763426971 1.765458333 0.1596470324 0 1.476831790 2.09983786
shape2 0.685682201 0.688266197 0.0354034049 0 0.623633255 0.76097862

The results can also be viewed in a boxplot (Figure 5).

R> plot(boot_gengamma_tr)

Given that the number of observations in our model is 5752 (accessible through
est_gengamma_tr$model$t), it is reasonable to anticipate that standard deviations based on
asymptotics would yield precise results. Fortunately, this holds true in our scenario. Note that stan-
dard deviations can also be obtained using the vcov() generic function for both est_gengamma_tr
and boot_gengamma_tr.
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Figure 6: Simulated time series based on the generalized gamma model with trend.

R> est_gengamma_tr$fit$coef_sd - boot_gengamma_tr$bootstrap$coef_sd

log(scale)_omega log(scale)_beta1 log(scale)_alpha1 log(scale)_phi1 shape1
-5.171928e-03 2.900388e-06 2.181417e-03 5.348887e-03 -7.111530e-03

shape2
-1.138839e-03

Lastly, we highlight the utilization of simulation techniques. Simulation is executed using the
gas_simulate() function, which can be supplied with either an estimated model or a custom model
structure.

R> t_sim <- 20
R> x_sim <- rep(max(x) + 1, t_sim)

R> set.seed(42)
R> sim_gengamma_tr <- gas_simulate(est_gengamma_tr, t_sim = t_sim, x_sim = x_sim)
R> sim_gengamma_tr

GAS Model: Generalized Gamma Distribution / Scale Parametrization / Unit Scaling

Simulations:
t1 t2 t3 t4 t5 t6 t7

1.009836881 0.706070572 1.139254609 0.112834862 0.252712188 2.268641670 2.271065825
t8 t9 t10 t11 t12 t13 t14

0.742231695 0.676595922 0.259042333 0.004836128 0.077080566 0.608510890 0.799449725
t15 t16 t17 t18 t19 t20

1.126124047 0.157351783 0.124067217 0.100168697 0.648121920 0.219983546

The simulated time series can be plotted using the generic plot() function (Figure 6).

R> plot(sim_gengamma_tr)

The simulated time series can be employed, for example, to assess the impact of order arrivals on
queuing systems, as demonstrated by Tomanová and Holý (2021).

4.2 Ice Hockey Rankings

In the second case study, we showcase the estimation of a multivariate GAS model, followed by
forecasting and assessing uncertainty in the filtered time-varying parameters.

We present the empirical study of Holý and Zouhar (2022) which analyzes the results of the
Ice Hockey World Championships. Our main object of interest is the annual ranking of 16 teams
participating in the championships. While there exists a comprehensive statistical toolkit for ranking
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data, as described e.g., by Alvo and Yu (2014), it is worth noting that the time perspective is often
overlooked in the ranking literature, as highlighted by Yu et al. (2019). This is precisely where the
GAS model emerges as a valuable tool in our analysis.

Our analyzed data are supplied in the ice_hockey_championships dataset. We restrict ourselves
to years 1998–2019 just as Holý and Zouhar (2022). In 1998, the number of teams in the tournament
increased from 12 to 16. In 2020, the championship was cancelled due to Covid-19 pandemic. We
start by creating two variables – the final ranking of 16 participating teams in each year y and the
dummy variable indicating which country (or countries) hosted the championship in each year x.

R> library("dplyr")
R> library("ggplot2")
R> library("gasmodel")

R> data("ice_hockey_championships")

R> t <- 22
R> n <- ncol(ice_hockey_championships$host)
R> y <- ice_hockey_championships$rankings[1:t, ]
R> x <- setNames(lapply(1:n, function(i) { ice_hockey_championships$host[1:t, i] }),
+ colnames(y))

We look at some basic statistics. In our sample, nine countries have participated each year.

R> participate <- colSums(is.finite(y))
R> names(participate)[participate == t]

[1] "CAN" "CHE" "CZE" "FIN" "LVA" "RUS" "SVK" "SWE" "USA"

The following countries hosted the championships, some of them multiple times.

R> host <- sapply(x, FUN = sum)
R> host[host > 0L]

AUT BLR CAN CHE CZE DEU FIN FRA LVA NOR RUS SVK SWE
1 1 1 2 2 3 3 1 1 1 3 2 3

In the years under analysis, the gold medals were awarded to the following countries.

R> gold <- colSums(y == 1L)
R> gold[gold > 0L]

CAN CZE FIN RUS SVK SWE
5 5 2 4 1 5

The gasmodel package provides a single distribution on rankings – the Plackett–Luce distribu-
tion.

R> distr(filter_type = "ranking")

distr_title param_title distr param type dim orthog default
24 Plackett-Luce Worth pluce worth ranking multi FALSE TRUE

It is a convenient and simple probability distribution on rankings utilizing a worth parameter
for each item to be ranked. It originates from Luce’s choice axiom and is also related to the Thur-
stone’s theory of comparative judgment, see Luce (1977) and Yellott (1977). For more details on this
distribution, see Plackett (1975), Stern (1990), and Critchlow et al. (1991).

We consider a total of three different models. We incorporate x as an exogenous variable in
our model to capture possible home advantage. For each model, we assume a panel-like structure
where each worth parameter has its own intercept, while the regression and dynamics parameters
remain the same for all worth parameters. In the gasmodel package, this structure can be achieved
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using the coef_fix_value and coef_fix_other arguments. Alternatively, for convenience, the value
panel_structure can be included in the coef_fix_special argument. It is important to note that
the worth parameters in the Plackett–Luce distribution are not identifiable, and it is common practice
to impose a standardizing condition. In our model, we enforce the condition that the sum of all ωi is
0. This can be accomplished by including the value zero_sum_intercept in the coef_fix_special
argument.

First, we estimate the static model where there are no dynamics involved. In this case, we set
both the autoregressive and score orders to zero. Either a single integer can be provided to determine
the order for all parameters, or a vector of integers can be supplied to specify the order for individual
parameters.

R> est_static <- gas(y = y, x = x, distr = "pluce", p = 0, q = 0,
+ coef_fix_special = c("zero_sum_intercept", "panel_structure"))

Second, we estimate the standard mean-reverting GAS model of order one. In order to expedite
the numerical optimization process, we incorporate starting values based on the static model.

R> est_stnry <- gas(y = y, x = x, distr = "pluce",
+ coef_fix_special = c("zero_sum_intercept", "panel_structure"),
+ coef_start = as.vector(rbind(est_static$fit$par_unc / 2, 0, 0.5, 0.5)))

Third, we estimate the random walk model. In other words, we set the autoregressive coefficient
to 1. The easiest way to specify this is by including the value random_walk in the coef_fix_special
argument. In our random walk model, we consider the initial values of the worth parameters to be
parameters to be estimated. While the par_init argument does not directly support this, we can set
regress = "sep" and use cumulative sums of exogenous variables to achieve this initialization for
this particular model. However, it is generally not recommended to estimate initial parameter values
as it introduces additional variables, lacks reasonable asymptotics, and can lead to overfitting in finite
samples. It is important to approach the random walk model with caution, as it is not stationary
and the standard maximum likelihood asymptotics are not valid.

R> est_walk <- gas(y = y, x = lapply(x, cumsum), distr = "pluce", regress = "sep",
+ coef_fix_special = c("zero_sum_intercept", "panel_structure", "random_walk"),
+ coef_start = as.vector(rbind(est_static$fit$par_unc, 0, 0.5, 1)))

To avoid redundancy, we will omit the output of the gas() function, which contains rows for each
coefficient of each worth parameter. Since most coefficients are the same due to the assumed panel
structure, it is unnecessary to display them all. Instead, we print only one set of the home advantage
and dynamics coefficients.

R> cbind(est_static = c("beta1" = unname(coef(est_static)[2]), "alpha1" = 0, "phi1" = 0),
+ est_stnry = coef(est_stnry)[2:4], est_walk = coef(est_walk)[2:4])

est_static est_stnry est_walk
beta1 0.1707329 0.2274378 0.09873335
alpha1 0.0000000 0.3919432 0.34300137
phi1 0.0000000 0.5062479 1.00000000

In all three models, coefficient β1 representing the home advantage is positive but not significant.

R> cbind(est_static = c("beta1" = unname(est_static$fit$coef_pval)[2], "alpha1" = 0, "phi1" = 0),
+ est_stnry = est_stnry$fit$coef_pval[2:4], est_walk = est_walk$fit$coef_pval[2:4])

est_static est_stnry est_walk
beta1 0.514887 3.772815e-01 5.995825e-01
alpha1 0.000000 2.141361e-06 2.634611e-09
phi1 0.000000 6.463353e-04 0.000000e+00
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We compare the models using the Akaike information criterion (AIC). The gas class allows for
generic function AIC(). In terms of AIC, the mean-reverting model outperformed the remaining two
by a wide margin.

R> AIC(est_static, est_stnry, est_walk)

df AIC
est_static 24 1299.600
est_stnry 26 1274.391
est_walk 25 1300.851

Our models enable us to construct the “ultimate” or long-run ranking. The rankings produced by
both models are in agreement for all but the first three positions. However, the long-term strength
estimates for these three teams are very close to each other, making the final ranking less clear-cut.

R> tibble(team = colnames(y)) %>%
+ mutate(stnry_strength = est_stnry$fit$par_unc) %>%
+ mutate(stnry_rank = rank(-stnry_strength)) %>%
+ mutate(static_strength = est_static$fit$par_unc) %>%
+ mutate(static_rank = rank(-static_strength)) %>%
+ arrange(stnry_rank)

# A tibble: 24 × 5
team stnry_strength stnry_rank static_strength static_rank
<chr> <dbl> <dbl> <dbl> <dbl>

1 CAN 3.72 1 3.72 2
2 FIN 3.70 2 3.66 3
3 SWE 3.65 3 3.84 1
4 CZE 3.47 4 3.41 4
5 RUS 3.25 5 3.17 5
6 USA 1.83 6 2.18 6
7 CHE 1.67 7 1.76 7
8 SVK 1.65 8 1.55 8
9 LVA 0.862 9 0.822 9

10 DEU 0.280 10 0.311 10
11 BLR 0.254 11 0.109 11
12 NOR 0.0335 12 -0.0743 12
13 DNK -0.0732 13 -0.175 13
14 FRA -0.405 14 -0.509 14
15 AUT -0.833 15 -0.886 15
16 ITA -1.02 16 -1.10 16
17 UKR -1.34 17 -1.52 17
18 SVN -1.75 18 -1.64 18
19 KAZ -1.83 19 -1.78 19
20 JPN -1.99 20 -1.94 20
21 HUN -3.28 21 -3.20 21
22 GBR -3.92 22 -3.89 22
23 POL -3.95 23 -3.90 23
24 KOR -3.96 24 -3.91 24

Additionally, we can examine the evolution of the worth parameters for individual teams over
the years. The point estimates of time-varying parameter values can be directly obtained from the
gas() function. Using the generic plot() function allows us to visualize the time-varying parameters
of individual models. When multiple parameters are time-varying, as in our scenario, the function
plots them in sequence. For the purpose of this document, we will only display figures specific to the
Canada team (Figures 7, 8, and 9).

R> plot(est_static, which = 3)
R> plot(est_stnry, which = 3)
R> plot(est_walk, which = 3)
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Figure 7: Time-varying parameters of the Canada team based on the static model.
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Figure 8: Time-varying parameters of the Canada team based on the stationary model.
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Figure 9: Time-varying parameters of the Canada team based on the random walk model.
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Figure 10: Confidence bands of time-varying parameters of the Canada team based on the stationary
model.

However, it is important to note that these estimates are subject to uncertainty. To capture the
uncertainty, we can utilize simulations by leveraging the gas_filter() function, which accepts the
output of the gas() function as an argument. This allows us to obtain the standard deviations and
quantiles for the worth parameter estimates, providing a more comprehensive understanding of the
parameter dynamics over time.

R> set.seed(42)
R> flt_stnry <- gas_filter(est_stnry)

To visualize time-varying parameters with confidence band, we can use the plot() on the
gas_filter object (Figure 10).

R> plot(flt_stnry, which = 3)

Finally, we perform one-year-ahead forecasts. We use the gas_forecast() function, which can
again take the estimated model as an argument.

R> fcst_stnry <- gas_forecast(est_stnry, t_ahead = 1, x_ahead = 0)

R> tibble(team = colnames(y)) %>%
+ mutate(fcst_strength = fcst_stnry$forecast$par_tv_ahead_mean[1, ]) %>%
+ mutate(fcst_gold = exp(fcst_strength) / sum(exp(fcst_strength))) %>%
+ mutate(fcst_rank = rank(-fcst_strength)) %>%
+ mutate(real_rank = ice_hockey_championships$rankings[24, ]) %>%
+ arrange(real_rank)

# A tibble: 24 × 5
team fcst_strength fcst_gold fcst_rank real_rank
<chr> <dbl> <dbl> <dbl> <dbl>

1 CAN 3.97 0.234 2 1
2 FIN 3.97 0.235 1 2
3 USA 2.09 0.0356 6 3
4 DEU 0.742 0.00929 10 4
5 RUS 3.43 0.137 3 5
6 CHE 1.82 0.0272 7 6
7 CZE 3.41 0.134 4 7
8 SVK 1.58 0.0214 8 8
9 SWE 3.40 0.133 5 9

10 KAZ -2.05 0.000569 19 10
11 LVA 0.978 0.0117 9 11
12 DNK 0.229 0.00556 11 12
13 NOR 0.125 0.00501 12 13
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Figure 11: One-step ahead forecasts of the Canada team based on the stationary model.

14 GBR -3.55 0.000127 22 14
15 BLR -0.704 0.00219 14 15
16 ITA -0.957 0.00170 16 16
17 AUT -0.832 0.00192 15 Inf
18 FRA -0.490 0.00271 13 Inf
19 HUN -3.31 0.000162 21 Inf
20 JPN -2.21 0.000486 20 Inf
21 KOR -3.81 0.0000982 23 Inf
22 POL -3.99 0.0000821 24 Inf
23 SVN -1.95 0.000631 18 Inf
24 UKR -1.69 0.000813 17 Inf

The forecasted values can be displayed using the generic plot() function (Figure 11).

R> plot(fcst_stnry, which = 3)

5 Limitations and Customization

5.1 Adding a New Distribution

Despite providing a reasonable range of distributions (refer to Table 1), the current version of the
gasmodel package does not include certain distributions found in the GAS literature. Notable
examples are copula models (see, e.g., De Lira Salvatierra and Patton, 2015; Koopman et al., 2018),
matrix models (see, e.g., Hansen et al., 2016; Opschoor et al., 2018), and censoring models (see, e.g.,
Harvey and Ito, 2020; Harvey and Liao, 2023).

Users are encouraged to customize the package by adding new distributions. To incorporate a
new distribution into the package, please follow these steps:

1. Choose a name for the distribution and parametrization, such as newdistr and newparam,
respectively.

2. Create an R file in the R directory, such as R/distr_newdist_newparam.R, which will contain
all the necessary functions for the new distribution.

3. Implement the following functions in the R file, adhering to the structure used for other distri-
butions in the package:

• distr_newdistr_newparam_parameters() listing the parameters,

• distr_newdistr_newparam_density() computing the density,
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• distr_newdistr_newparam_loglik() computing the log-likelihood,
• distr_newdistr_newparam_mean() computing the mean,
• distr_newdistr_newparam_var() computing the variance,
• distr_newdistr_newparam_score() computing the score,
• distr_newdistr_newparam_fisher() computing the Fisher information,
• distr_newdistr_newparam_random() generating random variables,
• distr_newdistr_newparam_start() estimating starting values of the parameters.

4. Update the distr_table.xlsx file located in the data-raw directory by adding a new row to
the table that includes the names of the distribution and parametrization.

5. Run the distr_table.R script located in the data-raw directory. This script saves the content
of the distr_table.xlsx table to the distr_table dataset in the package.

By following these steps, users will be able to add a novel distribution to the package, integrating it
with the existing framework.

5.2 Interaction Between Parameters and Non-Linear Dependence

The dynamics are implemented in the standard form (3) of Creal et al. (2013), which has been
further extended to include exogenous variables in the form (4) or (5). However, it is worth noting
that existing literature includes models with interactions between different time-varying parameters
or nonlinear forms of dependence on past values (see, e.g., Harvey and Sucarrat, 2014; Holý and
Tomanová, 2022). Incorporating such complex dynamics would significantly complicate the interface
of the functions, so we have opted to keep the dynamics simple for ease of use.

Nevertheless, the source code can be modified to accommodate specific cases. This can be
achieved by using a placeholder exogeneous variable and making a manual adjustment within the
likelihood_evaluate() function in the helper_likelihood.R file. Specifically, the value of the
placeholder variable can be can hard-coded to a desirable transformation of any concurrent or lagged
parameter.

5.3 Non-Standard Structure of Time Series

The package focuses on the standard form of time series. However, certain applications, such as those
in the field of sports statistics, may require a specialized structure for modeling time series data. In
these cases, the individual matches between teams or players in a specific league are often modeled
using distributions like Bernoulli, Skellam, or bivariate Poisson (see, e.g., Gorgi et al., 2019; Koopman
and Lit, 2019). Time series should therefore represent the outcomes of matches. However, at each
observation, different teams may be participating. This unique characteristic cannot be adequately
captured by the standard form of univariate (or bivariate) time series, and a more sophisticated data
structure is required to account for the varying teams involved.

To address this limitation, an R package that specifically caters to the use of score-driven models
in sports statistics is currently being developed. This specialized package will provide the necessary
tools and data structures to effectively model and analyze the unique dynamics present in these
applications. However, there are other options beyond R that already exist. Notably, GAS pairwise
comparison models can be estimated using the PyFlux package in Python (Taylor, 2018), as well as
through the stand-alone GUI application Time Series Lab (Lit et al., 2021).

5.4 Other Dynamic Models Using Score

In the literature on GAS models, the score has been employed in a wide range of dynamic models.
Some of these models fall outside the scope of this package. Examples of such models include semi-
parametric models (see, e.g., Blasques et al., 2016a; Patton et al., 2019), Markov regime switching
models (see, e.g., Bazzi et al., 2017; Blazsek and Haddad, 2022), and spatio-temporal models (see,
e.g., Catania and Billé, 2017; Gasperoni et al., 2023).
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6 Conclusion

The purpose of the gasmodel package is to provide researchers, analysts, and data scientists with
a versatile toolkit for a broad spectrum of GAS models in R. While it is important to note that not
all GAS models found in the literature are supported by the package due to their diverse nature,
the package still provides a solid foundation. For some specific GAS models, modifications of the
package may be required, or an alternative specialized package/code may prove to be a better option.
Nevertheless, the gasmodel package offers considerable flexibility for specifying dynamics, and it
boasts an extensive array of probability distribution options. This ensures that users have a diverse
set of tools at their disposal when working with GAS models, enabling them to tailor their analyses
to their specific needs.
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A Comparison with the GAS Package

In this appendix, we compare the gasmodel package with the GAS package. First, let us try
replicate the results from the case studies in Section 4. The GAS package offers the exponential and
gamma distributions but does not support the Weibull and generalized gamma distributions. The
exponential distribution is parametrized in terms of the rate parameter with the logistic link function
in the GAS package. The gasmodel package allows for both the scale and rate parametrizations
as well as the identical and logarithmic link functions. When the logarithmic link function is used,
however, the only difference between the scale and rate parametrizations is in the sign of the constant.

1:28



We can therefore compare the exponential model using the scale parametrization estimated by the
gasmodel package in Section 4.1 with the following exponential model using the rate parametrization
estimated by the GAS package.

R> spec_exp <- UniGASSpec(Dist = "exp", GASPar = list(location = TRUE))
R> fit_exp <- UniGASFit(spec_exp, data = y)
R> fit_exp

------------------------------------------
- Univariate GAS Fit -
------------------------------------------

Model Specification:
T = 5752
Conditional distribution: exp
Score scaling type: Identity
Time varying parameters: location
------------------------------------------
Estimates:

Estimate Std. Error t value Pr(>|t|)
kappa1 0.0008535178 0.001149039 0.7428099 2.287984e-01
a1 0.0488830441 0.006513237 7.5051838 3.064216e-14
b1 0.9634339711 0.009119708 105.6430684 0.000000e+00

------------------------------------------
Unconditional Parameters:
location
1.023616

------------------------------------------
Information Criteria:

AIC BIC np llk
11223.036 11243.008 3.000 -5608.518

------------------------------------------
Convergence: 0
------------------------------------------

Elapsed time: 0.02 mins

The results are nearly identical, within a reasonable level of precision. Other than the inverted
sign of the constant, the only difference lies in the reported p-values: the GAS package seems to
employ one-tailed hypotheses, whereas the gasmodel package uses two-tailed hypotheses. The visual
representation of time-varying parameters is also comparable, albeit with inverted signs (Figure 12).

plot(fit_exp, which = 1)

Next, we estimate the model with the gamma distribution and the rate parametrization.

R> spec_gamma <- UniGASSpec(Dist = "gamma", GASPar = list(scale = TRUE, shape = FALSE))
R> fit_gamma <- UniGASFit(spec_gamma, data = y)
R> fit_gamma

------------------------------------------
- Univariate GAS Fit -
------------------------------------------

Model Specification:
T = 5752
Conditional distribution: gamma
Score scaling type: Identity
Time varying parameters: scale
------------------------------------------
Estimates:
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Figure 12: Time-varying parameters based on the exponential model with the rate parametrization
from the GAS package.

Estimate Std. Error t value Pr(>|t|)
kappa1 -0.01301586 0.005587936 -2.329279 9.922151e-03
kappa2 -0.06533321 0.021302585 -3.066915 1.081403e-03
a1 0.05420745 0.009282091 5.840005 2.609969e-09
b1 0.82496872 0.058251327 14.162231 0.000000e+00

------------------------------------------
Unconditional Parameters:

scale shape
0.9283346 0.9367553

------------------------------------------
Information Criteria:

AIC BIC np llk
11330.024 11356.653 4.000 -5661.012

------------------------------------------
Convergence: 0
------------------------------------------

Elapsed time: 0.03 mins

This result significantly contrasts with the outcome obtained from the gamma model using the
scale parametrization, as estimated by the gasmodel package in Section 4.1. The default optimizer
within the GAS package identifies a suboptimal solution, yielding a significantly lower log-likelihood
compared to the exponential model. Note that the gamma distribution is a generalization of the
exponential distribution and should therefore result in the same or better fit. A visual examination
of the time-varying parameters further underscores the substantial disparity between the estimated
gamma and exponential models (Figure 13).

R> plot(fit_gamma, which = 1)

The default optimizer within the gasmodel package finds a considerably superior solution, likely
the optimal one, albeit demanding more computational resources. In both packages, it is possible to
alter the optimizers. However, in the GAS package, the optimizer’s parameters cannot be directly
provided through the UniGASFit() function. Instead, a complete replacement of the optimizer is
necessary, rendering it a more intricate process to manage.

After performing parameter estimation for the Weibull and generalized gamma distributions, the
case study presented in Section 4.1 proceeds by introducing a trend into the model. Regrettably,
the GAS package lacks the capacity for accommodating exogenous variables, thus preventing this
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Figure 13: Time-varying parameters based on the gamma model with the rate parametrization from
the GAS package.

extension. This shortcoming stands as a substantial limitation that considerably restricts the pack-
age’s potential applications. The case study in Section 4.1 also utilizes the bootstrapping function
provided by the gasmodel package. Such a feature is absent in the GAS package. This primarily
affects convenience, as bootstrapping can still be executed using custom code from the user along
with specialized packages. The functionality for simulation of GAS processes is very similar in both
packages.

The second case study presented in Section 4.2 is not replicable at all using the GAS package
due to its lack of support for the Plackett–Luce distribution or any distribution based on rankings.
Furthermore, the GAS package does not facilitate the imposition of constraints on coefficients, which
is useful, for instance, in creating random walk models or multivariate models with a panel structure.
In the same case study, the process of forecasting and deriving confidence bands on time-varying
parameters is illustrated. Similar functionality is also offered by the GAS package.

Table 2 compares the supported distributions, while Table 3 contrasts the available functionalities
in both packages. In general, the gasmodel package offers much broader range of GAS models,
encompassing various probability distributions and model specifications. The gasmodel package
(version 0.5.1) supports 26 distributions, whereas the GAS package (version 0.3.4) includes only
16 distributions. The GAS package features asymmetric and skewed versions of the normal and
Student’s t distributions, which are currently absent in the gasmodel package. Conversely, the
gasmodel package incorporates 14 distributions tailored for count, duration, categorical, circular,
compositional, and ranking data, which are not present in the GAS package. While the GAS
package caters primarily to standard GAS models without the ability to handle missing values, the
gasmodel package offers enhanced flexibility, allowing for various model structures, incorporation
of exogenous variables, and the handling of missing values in time series. Apart from differences
in probability distributions and model specification, both packages provide analogous functionalities
for inference, forecasting, and simulation. The GAS package also computes the probability integral
transform and offers certain capabilities for backtesting one-step ahead density and Value-at-Risk.
However, these functionalities are limited to continuous distributions, which constitute only a subset
of GAS models. Furthermore, such functionalities can be derived from the output generated by the
gasmodel package. For these reasons, we have decided not to implement them in gasmodel.
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Table 2: Comparison of the supported distributions in the gasmodel and GAS packages.
Distribution gasmodel GAS
Asymmetric Laplace ✓ ✓

Asymmetric Student‘s t with One Tail Decay ✗ ✓

Asymmetric Student‘s t with Two Tail Decay ✗ ✓

Bernoulli ✓ ✓

Beta ✓ ✓

Birnbaum–Saunders ✓ ✗

Categorical ✓ ✗

Dirichlet ✓ ✗

Double Poisson ✓ ✗

Exponential ✓ ✓

Gamma ✓ ✓

Generalized Gamma ✓ ✗

Geometric ✓ ✗

Laplace ✓ ✗

Multivariate Normal ✓ ✓

Multivariate Student‘s t ✓ ✓

Negative Binomial ✓ ✓

Normal ✓ ✓

Plackett–Luce ✓ ✗

Poisson ✓ ✓

Skellam ✓ ✓

Skewed Normal ✗ ✓

Skewed Student‘s t ✗ ✓

Student‘s t ✓ ✓

von Mises ✓ ✗

Weibull ✓ ✗

Zero-Inflated Geometric ✓ ✗

Zero-Inflated Negative Binomial ✓ ✗

Zero-Inflated Poisson ✓ ✗

Zero-Inflated Skellam ✓ ✗

Table 3: Comparison of the available functionality in the gasmodel and GAS packages.
Functionality gasmodel GAS
Various parametrizations and link functions ✓ ✗

Exogenous variables ✓ ✗

Higher score and autoregressive orders ✓ ✗

Custom initial values of time-varying parameters ✓ ✗

Fixed and bounded values of coefficients ✓ ✗

Missing values ✓ ✗

Custom optimization function ✓ ✓

Hessian-based inference ✓ ✓

Probability integral transform ✗ ✓

Confidence bands ✓ ✓

Forecasting ✓ ✓

Backtesting and rolling re-estimation ✗ ✓

Basic simulation ✓ ✓

Bootstrapping ✓ ✗

Easy visualization ✓ ✓

1:32



Modelling Time-Varying Rankings with Autoregressive and
Score-Driven Dynamics

Vladimír Holý
Prague University of Economics and Business

Winston Churchill Square 1938/4, 130 67 Prague 3, Czechia
vladimir.holy@vse.cz

Jan Zouhar
Prague University of Economics and Business

Winston Churchill Square 1938/4, 130 67 Prague 3, Czechia
zouharj@vse.cz

Abstract: We develop a new statistical model to analyse time-varying ranking data. The model can
be used with a large number of ranked items, accommodates exogenous time-varying covariates and
partial rankings, and is estimated via the maximum likelihood in a straightforward manner. Rankings
are modelled using the Plackett-Luce distribution with time-varying worth parameters that follow
a mean-reverting time series process. To capture the dependence of the worth parameters on past
rankings, we utilise the conditional score in the fashion of the generalised autoregressive score (GAS)
models. Simulation experiments show that the small-sample properties of the maximum-likelihood
estimator improve rapidly with the length of the time series and suggest that statistical inference
relying on conventional Hessian-based standard errors is usable even for medium-sized samples. In an
empirical study, we apply the model to the results of the Ice Hockey World Championships. We also
discuss applications to rankings based on underlying indices, repeated surveys, and non-parametric
efficiency analysis.

Keywords: Ranking Data, Random Permutation, Plackett-Luce Distribution, Generalised Autore-
gressive Score Model, Ice Hockey Rankings.
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1 Introduction

The rankings of universities, scientific journals, sports teams, election candidates, top-visited websites,
or products preferred by customers are all examples of ranking data. Statistical models of ranking
data have a long history, dating back at least to Thurstone (1927). Since then, the breadth of the
statistical toolkit for ranking data has increased rapidly; see, e.g., Marden (1995) and Alvo and Yu
(2014) for an in-depth textbook overview. However, a recent survey of the ranking literature by Yu
et al. (2019) draws attention to the lack of the time perspective in rankings and calls for research
in this particular direction. This paper aims to heed this call and contribute to the thin strand of
literature on time-varying ranking data. Unlike the existing models for time variation in rankings,
our approach aims to provide a flexible tool for the modelling of time-varying ranking data that is
similar to the autoregressive moving average (ARMA) model in the case of continuous variables.

Our model builds upon the (static) Plackett-Luce distribution of Luce (1959) and Plackett (1975),
a convenient and simple probability distribution on rankings utilising a worth parameter for each item
to be ranked. It originates from Luce’s choice axiom and is also related to the Thurstone’s theory
of comparative judgment (see Luce, 1977 and Yellott, 1977 for details). Although it is not without
limitations, the Plackett-Luce distribution is widely used as a base for statistical models that are used
to analyse ranking data.

This also holds true for the scarce literature devoted to models with time-varying ranks. Baker and
Mchale (2015) utilise the Plackett-Luce model and consider the individual worth parameters behind
the rankings to be time-varying – but deterministically so – in an application to golf tournament
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results. Glickman and Hennessy (2015) also base their model on the Plackett-Luce distribution but
consider worth parameters following the Gaussian random walk in an application to women’s alpine
downhill skiing results. Asfaw et al. (2017) take a different path and include the lagged ranking as
the current modal ranking in the Mallows model in an application to the academic performance of
high school students. Finally, Henderson and Kirrane (2018) employ the Plackett-Luce model with
observations weighted in time in an application to Formula One results. The latter three papers adopt
a Bayesian approach.

The generalised autoregressive score (GAS) models of Creal et al. (2013), which are also called
dynamic conditional score (DCS) models by Harvey (2013), have established themselves as a useful
modern framework for time series modelling. The GAS models are observation-driven models allowing
for any underlying probability distribution with any time-varying parameters. They capture the
dynamics of time-varying parameters using the autoregressive term and the lagged score, i.e., the
gradient of the log-likelihood function. The GAS class includes many well-known econometric models,
such as the generalised autoregressive conditional heteroskedasticity (GARCH) model of Bollerslev
(1986), which is based on the normal distribution with time-varying variance; the autoregressive
conditional duration (ACD) model of Engle and Russell (1998), which is based on the exponential
distribution with a time-varying scale; and the count model of Davis et al. (2003), which is based
on the Poisson distribution with a time-varying mean. The GAS models can be straightforwardly
estimated by the maximum likelihood method (see, e.g., Blasques et al., 2018 for details on the
asymptotic theory). Generally, the GAS models perform very well when compared to alternatives
(see, e.g., Koopman et al., 2016 for an extensive empirical and simulation study). Currently, the
website www.gasmodel.com lists over 200 scientific papers devoted to the GAS models.

In the paper, we propose a dynamic model for rankings based on the Plackett-Luce distribution
with time-varying worth parameters following the GAS score-driven dynamics. Our formulation
allows for exogenous covariates and corresponds to the setting of a panel linear regression with fixed
effects. We also consider the case of partial rankings. The proposed model is described in Section 2.

Using simulations, we investigate the finite-sample performance of the maximum likelihood esti-
mator of our model. First, we demonstrate the convergence of the estimated coefficients for exogenous
variables and of the GAS dynamics to their true values along the time dimension. Second, we show
that confidence intervals based on the standard maximum likelihood asymptotics appear to be us-
able even if the dimensions of data are moderate (such as 20 items ranked in 20 time periods). The
simulation study is conducted in Section 3.

To demonstrate the proposed methodology, we analyse the results of the Ice Hockey World Cham-
pionships from 1998 to 2019. We find that the proposed mean-reverting model fits the data better
than the static and random walk models. The benefits of our approach include a compilation of the
ultimate (long-term) ranking of teams, the straightforward estimation of the probabilities of specific
rankings (e.g., podium positions), and the prediction of future rankings. The empirical study is
presented in Section 4.

Besides sports statistics, we discuss several other possible applications of the proposed model.
Notably, we argue that our approach can be used to model rankings based on underlying indices
(such as various country rankings) and captures the interaction between items, which the univariate
models used directly for indices do not account for. Furthermore, we note that our model is suitable
for repeated surveys that are designed as rankings. Finally, we show how our approach can be
utilised for the rankings of decision-making units obtained by non-parametric efficiency analysis.
These applications are discussed in Section 5.

2 Dynamic Score-Driven Ranking Model

2.1 Plackett–Luce Distribution

Let us consider a set ofN items Y = {1, . . . , N}. Our main object of interest is a complete permutation
of this set y = (y(1), . . . , y(N)), known as a ranking, and its inverse y−1 =

(
y−1(1), . . . , y−1(N)

)
,

known as an ordering. Element y(i) represents the rank given to item i while y−1(r) represents the
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item with rank r; to enhance readability, in subscripts we will simply write rth instead of y−1(r) to
denote the item ranked rth.

We assume that a random permutation Y follows the Plackett-Luce distribution of Luce (1959)
and Plackett (1975). According to this distribution, a ranking is constructed by successively selecting
the best item, the second best item, the third best item, and so on. The probability of selecting
a specific item in any stage is equal to the ratio of its worth parameter and the sum of the worth
parameters of all items that have not yet been selected. Therefore, the probability of a complete
ranking y is

P [Y = y|f ] =
N∏

r=1

exp frth∑N
s=r exp fsth

, (1)

where f = (f1, . . . , fN )
′ are the items’ worth parameters. We use a parametrization allowing for

arbitrary values of fi, which facilitates subsequent modelling. Note that the probability mass func-
tion (1) is invariant to the addition of a constant to all parameters fi. Therefore, we employ the
standardisation

N∑

i=1

fi = 0. (2)

The log-likelihood function is

ℓ (f |y) =
N∑

i=1

fi −
N∑

r=1

ln

(
N∑

s=r

exp fsth

)
. (3)

For a random sample of rankings, a necessary and sufficient condition for the log-likelihood to have a
unique maximum is that in every possible partition of Y into two non-empty subsets, some item in the
second set ranks higher than some item in the first set at least once (Hunter, 2004). This condition,
for example, rules out that there is an item always ranked first (in maximum likelihood estimation,
this would result in an infinite worth parameter). To overcome the limitations of this condition in
practical applications, Luo and Qin (2019) propose a penalised maximum likelihood estimator that
adds a small perturbation to the log-likelihood.

For further details regarding the Plackett-Luce distribution, see Luce (1977), Yellott (1977), Stern
(1990), and Critchlow et al. (1991).

2.2 Conditional Score

The key ingredient in our dynamic model is the score, i.e., the gradient of the log-likelihood function,
which is defined as

∇ (f |y) = ∂ℓ (f |y)
∂f

. (4)

The score represents the direction for improving the fit of the distribution with a given f to a specific
observation y and indicates the sensitivity of the log-likelihood to the parameter f . For a complete
ranking y following the Plackett-Luce distribution, the score is given by

∇i (f |y) = 1−
y(i)∑

r=1

exp fi∑N
s=r exp fsth

, i = 1, . . . , N. (5)

An example with three items, in which the score is easily obtained, is given in Appendix A. Appendix B
rewrites the score formula using the softmax function and shows additional steps in its derivation. In
general, the score function has zero expected value and its variance is equal to the Fisher information:

I(f) = E
[
∇ (f |y)∇ (f |y)′

∣∣f
]
. (6)

Although the Fisher information is available in a closed form for the Plackett-Luce distribution, it is
computationally very intensive for larger N as it includes a sum over all possible permutations of Y.

2:3



The score has an appealing interpretation. In essence, it reflects the discrepancy between the
items’ worth parameters and the eventual ranking. This information can be exploited in a time-series
context where the worth parameters are updated with each new observation. For example, consider a
tournament with teams A, B, and C with worth parameters f = (2, 0,−2)′; here, fi can be interpreted
as a measure of team i’s strength. If the tournament goes as expected and the order of the players
is (A,B,C) – which happens with a probability of 76.3% – the score is close to zero for all players:
∇ [f |(A,B,C)] = (0.13, 0.0019,−0.14)′. However, if the order is reversed (an outcome occurring with
a probability of a mere 0.2%), the score is ∇ [f |(C,B,A)] = (−1.75, 0.76, 0.98)′. For team A, which
failed despite the high expectations, the score is negative; for those who beat A, the score is positive,
with the largest score obtained for the unlikely winner C. The score can therefore serve as a basis for
the correction of worth parameters after an observation is realised.

Figure 1 extends the previous example: it shows the score for f = (c, 0,−c)′ at different levels of
c > 0 under all six orderings. For large values of c, the score appears to converge to integer values.
This is no coincidence: the score is bounded by integer values. As we show in Appendix B, in the
general case of N items, the score always lies in (1 − r, 1) for the item with rank r = 1, . . . , N − 1
and in (1−N, 0) for the item with rank N .

2.3 Score-Driven Dynamics

Let us observe the rankings yt in times t = 1, . . . , T . Furthermore, let us assume that individual worth
parameters evolve over time and denote them ft = (f1,t, . . . , fN,t)

′ for t = 1, . . . , T . Specifically, let
the time-varying parameter fi,t follow the generalised autoregressive score (GAS) dynamics of Creal
et al. (2013) and Harvey (2013) with a score order P and an autoregressive order Q. Let it also linearly
depend on exogenous covariates x1, . . . , xM . The parameter fi,t is then given by the recursion

fi,t = ωi +
M∑

j=1

βjxi,t,j +
P∑

k=1

αk∇i (ft−k|yt−k) +
Q∑

l=1

φlfi,t−l, i = 1, . . . , N, t = 1, . . . , T, (7)

where ωi is item i’s individual fixed effect, βj is the regression parameter on xj , αk is the score
parameter for lag k, φl is the autoregressive parameter for lag l, and xi,t,j is the value of xj for item
i at time t. Note that this formulation corresponds to the setting of a panel linear regression with
fixed effects. In most of the GAS literature (and the GARCH and ACD literature, as a matter of
fact), only the first lags are utilised, i.e., P = Q = 1.

In the GAS framework, the score function can be scaled by the inverse of the Fisher information
or the inverse of the square root of the Fisher information, although the unit scaling is often utilised
as well (see Creal et al., 2013). The right choice of scaling can make estimators robust by mitigating
the effect of outlying realisations of yt on time-varying parameters. A well-known case is the Beta-
t-GARCH model of Harvey and Chakravarty (2008), the GAS counterpart to Bollerslev’s (1987)
GARCH-t model: by applying the inverse-information scaling in Beta-t-GARCH, one obtains a model
with a milder response of the variance to a large |yt| than that in GARCH-t (Harvey, 2013, Ch. 4). In
the case of the Plackett-Luce distribution, analogous robustness properties are already in place with
unit scaling (i.e., no scaling) thanks to the boundedness of the Plackett-Luce score. In fact, it turns
out that inverse-information scaling will typically make the effect of outlying observations on the
worth parameters more pronounced. Moreover, obtaining the Fisher information is computationally
very intensive even for moderate N , as it involves a sum over N ! permutations. For these reasons,
we only consider unit scaling.

Standardisation (2) cannot be enforced at each time t without deforming the dynamics given by
the recursion (7). Instead, we use the standardisation

N∑

i=1

ωi = 0. (8)

In the case of mean-reverting dynamics with no exogenous covariates, this corresponds to a zero sum
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Figure 1: Scores in the Plackett-Luce distribution for three items (A, B, and C), worth parameters
f = (c, 0,−c)′ for c ∈ [0, 5] (horizontal axis), and all possible orderings (panel titles).
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of the unconditional values:
f̄i =

ωi

1−∑Q
l=1 φl

, i = 1, . . . , N. (9)

2.4 Maximum Likelihood Estimation and Inference

For the estimation of the proposed dynamic model, we utilise the maximum likelihood estimator.
Let θ = (ω1, . . . , ωN−1, β1, . . . , βM , α1, . . . , αP , φ1, . . . , φQ)

′ be the vector of the N +M + P +Q− 1

parameters to be estimated, with ωN being obtained from (8) as ωN = −∑N−1
i=1 ωi. The estimate θ̂

is obtained from the conditional log-likelihood as

θ̂ ∈ argmax
θ

T∑

t=1

ℓ (ft|yt) . (10)

The recursive nature of ft requires the initialisation of the first few elements of the conditional score
and worth parameter time series. A reasonable approach is to set the initial conditional scores
∇(f0|y0), . . . , ∇(f−P+1|y−P+1) to zero, i.e., their expected value, and the initial parameters f0, . . . ,
f−Q+1 to the unconditional value f̄ given by (9). Alternatively, if additional information about the
initial worth parameters is available, it can be used instead. For instance, in a related GAS-type
model for the binary outcomes of tennis matches, Gorgi et al. (2019) use current ranking points to
initialise the worth parameters. On the other hand, they also note that other initialisation methods
yielded very similar parameter estimates. The initial worth parameters can also be considered as
additional parameters to be estimated. This would, however, significantly increase the number of
variables in the maximisation problem.

From a computational perspective, it is possible to utilise any general-purpose algorithm to solve
nonlinear optimisation problems. In our simulation study and empirical application, we employ
the Broyden–Fletcher–Goldfarb–Shanno (BFGS) algorithm. The optimisation performance can be
improved, however, by exploiting the special structure of the problem. Concerning the GAS mod-
els, Creal et al. (2013) recall the work of Fiorentini et al. (1996) and suggest an algorithm that
computes the gradient of the likelihood recursively and simultaneously with the time-varying pa-
rameters. Concerning the Plackett-Luce distribution, Hunter (2004) presents an iterative minoriza-
tion–maximization (MM) algorithm, which is further developed by Caron and Doucet (2012). These
ideas might prove to be a useful starting point for a specialised likelihood-maximisation algorithm
tailored to our model; however, the development of such an algorithm is beyond the scope of this
paper.

Our implementation of statistical inference tasks is based on standard maximum likelihood asym-
potics. Recall that under suitable regularity conditions, the maximum likelihood estimator θ̂ is
consistent and asymptotically normal, i.e., it satisfies

√
T
(
θ̂ − θ0

) d→ N
(
0,−H−1

)
, (11)

where H denotes the asymptotic Hessian of the log-likelihood, defined as

H = plim
T→∞

1

T

T∑

t=1

∂2 ln P [Yt = yt|ft]
∂θ0∂θ′0

. (12)

In finite samples, standard errors are often computed using the empirical Hessian of the log-likelihood
evaluated at θ̂, and the normal c.d.f. is used for statistical inference.

The truth is that establishing the asymptotic theory for GAS-type models is difficult in general.
At a minimum, it is necessary that the filter ft is invertible (see, e.g., Blasques et al., 2018 for more
details). The invertibility property ensures, among other things, that the initialisation does not matter
in the long run. The theoretical derivation of the conditions restricting the parameter space in order
to obtain consistency and asymptotic normality is, however, beyond the scope of this paper. Indeed,
it is very challenging in general to obtain any asymptotic results for the case of multivariate variables
with multiple time-varying parameters. In the following, we base our inference on the asymptotics
outlined above and rely on simulations to verify their validity.
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2.5 Extension to Partial Rankings

The distribution can be extended to the case in which the ranking of only the top Ñ < N items
is observed. The set of ranked items is then Ỹ = {y−1(1), . . . , y−1(Ñ)}. We denote the partial
ranking of items i ∈ Ỹ as ỹ and the partial ordering as ỹ−1. The probability mass function of the
Plackett-Luce distribution for the partial ranking ỹ is then

P
[
Ỹ = ỹ

∣∣∣f
]
=

Ñ∏

r=1

exp frth∑Ñ
s=r exp fsth +

∑
j ̸∈Ỹ exp fj

. (13)

The score function for the partial ranking ỹ is

∇i (f |ỹ) =





1−∑ỹ(r)
r=1

exp fi∑Ñ
s=r exp fsth+

∑
j ̸∈Ỹ exp fj

for i ∈ Ỹ,

−∑Ñ
r=1

exp fi∑Ñ
s=r exp fsth+

∑
j ̸∈Ỹ exp fj

for i ̸∈ Ỹ.
(14)

The probability mass function and the score function for partial rankings can be straightforwardly
plugged into the dynamics from previous sections.

3 Finite-Sample Performance

3.1 Simulation Design

We conduct a simulation study in order to investigate the behaviour of the maximum likelihood
estimator over two dimensions – the number of items N and the time horizon T . In particular, N
varies between 10, 20, and 30, and T ranges from 10 to 100. For each combination of N and T , we
conduct 100,000 replications.

The simulations employ the following toy model with the parameters selected to resemble those
estimated in the empirical study in Section 4. As we consider different values of N , the number of ωi
parameters differs. To somewhat standardise the item-specific fixed effects, we set ωi = 4(i−1)/(N−
1) − 2, i = 1, . . . , N , i.e., the parameters ωi range from −2 to 2 for any N . We include a single
exogenous covariate independently generated from the standard normal distribution. The regression
parameter is then set to β1 = 1. Finally, the order of the GAS model is chosen as P = Q = 1,
with the dynamics parameters set to α1 = 0.4 and φ1 = 0.5. Such parameter values result in the
unconditional values f̄i given by (9), which range from −4 to 4. In the following, we drop unnecessary
subscripts for brevity, and simply refer to β1 as β, α1 as α, and φ1 as φ.

3.2 Simulation Results

The results of the simulation study are reported in Figure 2. First, we investigate the accuracy of
the estimators ω̂i, β̂, α̂, and φ̂; to enhance readability, the results for ω̂i are averaged across all
items (i). In the first column of Figure 2, we report the mean absolute errors (MAE) between the
estimated coefficients and their true values. All estimates converge to their true values along the time
dimension. The score parameter α proves to be hard to estimate for small T as it has much higher
MAE than the autoregressive parameter φ with a comparable nominal value. Nevertheless, even in
a medium sample with N = 20 and T = 20, the errors are not that substantial, with values of 0.22
for ω̂i, 0.08 for β̂, 0.12 for α̂, and 0.05 for φ̂. In a large sample with N = 30 and T = 100, the errors
further decrease to 0.08 for ω̂i, 0.02 for β̂, 0.02 for α̂, and 0.01 for φ̂.

Second, we assess the usability of the maximum likelihood asymptotics for finite-sample inference.
Specifically, in the second column of Figure 2, we report the fraction of the samples in which the
95 percent confidence intervals contained the true parameter values, i.e., we present the estimated
coverage probabilities. For all parameters, the coverage probability converges to the target value of
0.95 from below along the time dimension. As in the case of MAE, the convergence of the coverage
probability is the slowest for the score parameter α. In a medium sample with N = 20 and T = 20,
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Figure 2: Mean absolute errors of the estimated coefficients and coverage probabilities of the 95%
confidence intervals. For the item-specific fixed effects, ω̂i, the results are averaged across all items.
Dashed horizontal lines are drawn at the 0 and 0.95 vertical coordinates to show the limit values of
mean absolute errors and the coverage probabilities under standard maximum-likelihood asymptotics.
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the coverage probabilities are 0.91 for ω̂i, 0.91 for β̂, 0.78 for α̂, and 0.92 for φ̂, while in a large sample
with N = 30 and T = 100, they amount to 0.94 for ω̂i, 0.94 for β̂, 0.92 for α̂, and 0.94 for φ̂.

4 Application to Ice Hockey Rankings

4.1 Data Set

We demonstrate the use of our model using data on the results of the Ice Hockey World Champi-
onships between the years 1998 and 2019. In 1998, the sanctioning body of the championships, the
International Ice Hockey Federation (IIHF), increased the number of teams in the tournament from
12 to 16, and has kept the number of teams at that level since then; hence, 1998 was chosen as
the starting year. For each year, the IIHF provides a complete ranking of all 16 participants. Over
the years, 24 different teams made it through the qualification process, and they comprise the set of
ranked items in our model.

For each year, we obtained information about the host country of the championships. In order
to account for the home-ice advantage, we included a home ice covariate, which is a time-varying
indicator variable (it is equal to 1 for home teams in the respective years, and it is equal to 0
otherwise).

4.2 Model Specification

The general structure of the team strength dynamics given by (7) includes an array of different
model specifications that can be obtained by (i) choosing the order of the GAS model (P,Q) and (ii)
imposing specific restrictions on the parameter space. As for the former, with the limited size of our
data set, it seems impractical to consider anything beyond the canonical P = Q = 1 model.

Setting P = Q = 0, on the other hand, yields a static strength model, which is equivalent to the
standard ranked-order logit (ROL) – a common go-to model for sports rankings. Recent applications
to sport rankings include, e.g., Caron and Doucet (2012) and Henderson and Kirrane (2018). The
latter use time-weighted observations to improve forecasts, but their model is intrinsically static.
Both referenced studies use a Bayesian approach to the estimation of the ROL model. We estimate
the static model to provide a benchmark for the models with score-driven dynamics.

In the model with P = Q = 1, we generally expect the autoregressive parameter to lie in the
(0, 1) interval, implying a certain degree of persistence in team strengths with a mean-reverting
tendency. In our data set, this is indeed the result we obtain if we leave the parameters unrestricted
in the likelihood-maximisation procedure. We refer to this variant as the mean-reverting model.
The need for this type of a sports ranking model has recently been recognised by Baker and Mchale
(2015). In their analysis of golf tournament rankings, they note that while their model’s deterministic
dynamics do sufficiently capture the time variation in an individual player’s performance, a mean-
reverting random process would be more appropriate for teams. The performance of individual players
tends to follow long-term trends, potentially with breakpoints (due to injuries, the long-term evolution
of self-confidence, ageing, etc.). Teams, on the other hand, do not have a fixed membership structure;
players come and go on a relatively flexible basis, depending on their current performance. Massive
exogenous shocks with a persistent effect are less common.

A GAS setting similar to ours has recently been used in the context of sports statistics by Koopman
and Lit (2019). Rather than dealing with ranking data, Koopman and Lit focus on individual football
matches, modelling either the qualitative (win-draw-loss) outcomes or match scores. Their estimates
indicate high persistence levels in strength dynamics, with a typical value of (the equivalent to our)
φ̂ of around 0.998 for back-to-back matches in most of the estimated models. The authors note that
this corresponds to a yearly persistence of about 0.90.

If strong persistence is expected, it might be reasonable to restrict the autoregressive parameter
to unity, making the team strengths follow a random walk pattern. A ranking model of this type was
presented by Glickman and Hennessy (2015) in the context of women’s alpine downhill skiing com-
petitions. Their model, however, does not make use of the score-driven component and is estimated
in a Bayesian framework. In a GAS setting, a model with a random walk behaviour of the team
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Table 1: Selected estimates for the Ice Hockey World Championships data (1998–2019).
Mean-Reverting Static Random Walk

Home ice (β̂) 0.227 0.171 0.099
(0.258) (0.262) (0.188)

Score parameter (α̂) 0.392∗∗∗ 0.343∗∗∗

(0.083) (0.058)

Autoregressive parameter (φ̂) 0.506∗∗∗

(0.149)

log-likelihood −611.195 −625.800 −625.425
AIC 1274.391 1299.600 1300.851

Notes: (i) Estimates of ωi are omitted from the table to enhance readability. (ii) Standard errors in paren-
theses. (iii) ∗∗∗p < 0.001; ∗∗p < 0.01; ∗p < 0.05.

strength (henceforth, random walk model) should be approached with caution. The ft filter in
this case is not invertible, making the consistency of the maximum likelihood estimator dubious. That
said, in our simulation experiments, the mean absolute error of the coefficient estimates was roughly
comparable to the mean-reverting model of equal sample size, provided that the model specifications
agree with the underlying data-generating processes. We also note that a GAS model with random
walk strength dynamics has recently been presented by Gorgi et al. (2019) to predict the outcomes
of individual tennis matches. Gorgi et al. view mean-reverting processes as the dynamics of choice
for team sports and non-stationary dynamic processes as more appropriate for individual sports.

Using the general framework developed in Section 2, we can easily estimate all three model
variants (the static model, mean-reverting model, and random walk model) and compare their fits
using information-theoretic criteria. As only a subset of all teams participated in each championship,
we employ the form of the likelihood function for partial rankings developed in Section 2.5.

The computation is performed using R package gasmodel for estimation, forecasting, and simu-
lation of GAS models based on various distributions including the Plackett-Luce distribution. The
package includes the analyzed Ice Hockey World Championships data and a vignette describing our
modelling approach. It is available at https://github.com/vladimirholy/gasmodel.

4.3 Empirical Results

In the observed period, 1998–2019, only 9 teams participated in all 22 Ice Hockey World Champi-
onships. These included all the teams from the so-called Big Six (Canada, Czechia, Finland, Russia,
Sweden, and the United States) along with Latvia, Slovakia, and Switzerland. Three teams – Great
Britain, Poland, and South Korea – only appeared once. The dominance of the Big Six is evident
when looking at the podium positions: out of the 66 medals, only six were handed out to teams out-
side the Big Six (four were awarded to Slovakia and two to Switzerland). Hosting was also unevenly
distributed among the countries: only 14 of the teams experienced the home-ice advantage, with
Czechia, Slovakia, and Switzerland hosting the championships twice and Germany, Finland, Russia,
and Sweden hosting them three times each.

Table 1 presents the results for all three estimated models. In terms of the Akaike information
criterion (AIC), the mean-reverting model outperformed the remaining two by a wide margin, with
∆AIC exceeding 25 in both cases. This (i) implies that the introduction of strength dynamics can
improve the model fit dramatically and (ii) provides empirical support for the conjecture of Gorgi et al.
(2019) about the suitability of mean-reverting dynamics for team sports. The 95% confidence interval
for the autoregressive parameter in the mean-reverting model, [0.21, 0.80], indicates the presence of
moderate persistence and leads us to reject the null hypotheses of both a random-walk behaviour and
no serial dependence.

Despite the differences in AIC values, for parameters that are shared across the models, the
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Table 2: Unconditional team strength estimates and ultimate ranking in the mean-reverting and
static models. Teams are sorted by the ultimate ranking obtained from the mean-reverting model.

Mean-Reverting Static

Country Strength Rank Strength Rank

Canada 3.72 1 3.72 2
Finland 3.70 2 3.66 3
Sweden 3.65 3 3.84 1
Czechia 3.47 4 3.41 4
Russia 3.25 5 3.17 5
United States 1.83 6 2.18 6

Switzerland 1.67 7 1.76 7
Slovakia 1.65 8 1.55 8
Latvia 0.86 9 0.82 9
Germany 0.28 10 0.31 10
Belarus 0.25 11 0.11 11
Norway 0.03 12 −0.07 12

Denmark −0.07 13 −0.17 13
France −0.41 14 −0.51 14
Austria −0.83 15 −0.89 15
Italy −1.02 16 −1.10 16
Ukraine −1.34 17 −1.52 17
Slovenia −1.75 18 −1.64 18

Kazakhstan −1.83 19 −1.78 19
Japan −2.00 20 −1.94 20
Hungary −3.28 21 −3.20 21
Great Britain −3.92 22 −3.89 22
Poland −3.95 23 −3.90 23
South Korea −3.96 24 −3.91 24

estimates are qualitatively similar. In both the mean-reverting and random walk model, the values
of the score coefficient, α̂, are positive and significant. This implies that the score component of
our model does help in explaining the ranking dynamics. A positive sign of α̂ is in line with the
interpretation of the conditional score outlined in Section 2.2: a surprising success will positively
affect the team’s strength estimate for the next season and vice versa.

In accordance with expectations, point estimates in all three models suggest the existence of a
home-ice advantage (β̂ > 0), but the home ice is not statistically significant in either model. To assess
the effect size implied by β̂, we need to know the team strengths. Table 2 shows the estimates of the
unconditional team strength from the mean-reverting model, which are obtained based on (9), and
the ω̂i for the static model. The differences in successive strength values suggest that an increase of
0.23 (the home-ice advantage estimate in the mean-reverting model) moves a team 0–2 places ahead
in the ranking.

For the mean-reverting and static models, the estimates of ωi can be used to provide the ‘ultimate’
(or long-run) ranking. Both models confirm the dominance of the Big Six. Indeed, the rankings in
both models agree in all but the first three places; the long-term strength estimates for these three
teams are very close to one another, though, making the eventual ranking less clear cut.

Figure 3 presents the estimated values of the worth parameters fi,t (referred to here as the
strength) in the mean-reverting model. Even though the serial dependence, given by the autore-
gressive parameter α, is mild, it is clearly discernible in the plots. For teams that only appeared
in a handful of championships (i.e., the weaker teams, located at the bottom of the figure), we can
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Table 3: One-step-ahead rank prediction and medal probabilities for the Big Six in the mean-reverting
model. No home-ice advantage assumed.

Country Strength Predicted rank P[gold medal] P[podium position]

Finland 3.974 1 0.235 0.630
Canada 3.970 2 0.234 0.629
Russia 3.431 3 0.137 0.431
Czechia 3.415 4 0.134 0.426
Sweden 3.400 5 0.133 0.421
United States 2.086 6 0.036 0.128

see prolonged periods with unchanging values of the strength value, which correspond to the absent
observations. Similar figures for the static and random walk models are given in Figures 4 and 5.

If the values of the explanatory variables at time T +1 are known, they can be plugged into (7) to
obtain the values of the worth parameters at T + 1. These can in turn serve to make one-step-ahead
predictions or estimate the probabilities of specific rankings or ranking-based events. Applications
in betting are straightforward. For instance, one can easily obtain the probability that a particular
team will win a medal or that the podium will be occupied by a given list of teams.

An example is presented in Table 3. Assuming that none of the Big Six countries host the upcoming
championships, we calculated the future value of the team strength, fi,T+1, and the associated rank
prediction for the Big Six based on our estimates of the mean-reverting model. Even though the team
strengths have the mean-reverting tendency, short-run predictions can differ from the unconditional
mean substantially: even though the Big Six occupy the first six places according to both the predicted
rankings for T +1 and the ultimate rankings in Table 2, the rankings themselves are notably different.

Plugging the values of fi,T+1 into (13) yields the estimated probability of a partial ordering of
interest at T + 1. For instance, the estimated probability of the partial ordering (Finland, Canada,
Russia) – the predicted podium outcome – is 1.85 percent. This probability is low mainly because the
predicted strengths happen to be quite similar across the first five teams. Analogously, we can obtain
the probability of winning a gold medal, which is presented in the fourth column of Table 3. Note
that the winning probabilities are markedly different despite the similar team strengths. In practical
applications, one might be interested in general ranking-based events, such as the probability that
a team finishes on the podium; these probabilities can easily be obtained by combining suitable
elementary events. An example is given in the last column of Table 3.

5 Discussion of Other Applications

5.1 Underlying Index

There is often an underlying index or score behind a ranking. For example, the Times Higher Ed-
ucation World University Rankings are based on the score weighted over 13 individual indicators
grouped into five categories – industry income, international diversity, teaching, research, and ci-
tations. International rankings based on various indices such as the Global Competitiveness Index,
Bloomberg Innovation Index, Human Development Index, Climate Change Performance Index, and
Good Country Index are compiled in a similar fashion. Naturally, an analysis of these rankings and
indices is a popular subject of scientific research; e.g., Saisana et al. (2005) assess the robustness of
country rankings, Paruolo et al. (2013) measure the importance of individual variables in composite
indicators, and Varin et al. (2016) investigate the role of citation data in the ratings of scholarly
journals.

The time aspect is inherent in these rankings, as they are typically compiled annually. Leckie
and Goldstein (2009) highlight the need for the prediction of ratings in the context of school choice
based on league tables. They model the test scores of individual students nested in schools using
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Figure 3: Mean-reverting model – estimated team strength for all teams over the entire observed
period. Teams are ordered by the estimated unconditional ranking.
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Figure 4: Static model – estimated team strength for all teams over the entire observed period. Teams
are ordered by the estimated unconditional ranking. In the static model, team strengths only vary
with the home-ice advantage, producing little bumps in the plots.
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Figure 5: Random walk model – estimated team strength for all teams over the entire observed
period. Teams are ordered by the mean strength estimate.
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the multilevel random-intercepts model. As they note, the main goal is to obtain relative ratings
of schools rather than changes in the mean and variance over time. The conclusion is that there is
a substantial uncertainty in test scores and their ability to forecast school performance is therefore
very limited. Nevertheless, it may prove to be interesting to model the rankings of schools using our
proposed model.

In general, rankings can be modelled directly – by a model for permutations – or indirectly – by
a model for the underlying index. If it is reasonable to assume that the indices of individual items
are independent, the best option might be to model just the underlying index using a univariate
model. In many real-life applications, the independence of the items’ index values is questionable,
as the items may interact in various ways or share a common pool of resources. When there is
a potential relationship, our dynamic model for rankings might be more suitable, as it naturally
captures dependence between the items. Furthermore, in the end, the reader is often only interested
in the eventual rankings anyway, as they are more illustrative and attractive than the underlying
indices.

5.2 Repeated Surveys

A common way of obtaining ranking data is through a survey in which respondents are asked to rank
items. Many surveys are repeated on several occasions, forming time-series data. For the statistical
methodology dealing with repeated surveys, see Scott and Smith (1974) and Steel and McLaren
(2009). By asking ranking questions in repeated surveys, we arrive at a time series of rankings. For
example, customers of a retail shop may be periodically asked to rank products according to their
preferences. In this case, the proposed dynamic ranking model could be a useful tool.

5.3 Non-Parametric Efficiency Analysis

Another interesting application is modelling the rankings of decision making units (DMUs) obtained
by non-parametric efficiency analysis, such as the data envelopment analysis (DEA) pioneered by
Charnes et al. (1978) and Banker et al. (1984). Typically, DEA is applied in fields such as banking,
health care, agriculture, transportation, and education to analyse the performance of banks, hospitals,
farms, airlines, and schools, respectively (Liu et al., 2013). The goal of such analyses is to separate
efficient and inefficient DMUs, assign efficiency scores to them, and determine their ranking. Many
empirical papers also study the determinants of efficiency. The analysis is usually carried out by first
obtaining the efficiency scores and then analysing them using regression in the second phase. Simar
and Wilson (2007) (i) point out that a vast majority of these analyses ignore the inherent dependence
between efficiency scores in their second phase, and (ii) develop bootstrap procedures to fix invalid
inference.

Simar and Wilson (2007) focus on the cross-sectional case in which dependence only occurs be-
tween the DMUs, not over time, which also greatly facilitates bootstrapping. The extension to panel
data is not straightforward to say the least. Nevertheless, in many empirical studies, DMUs are
observed annually, with the intention of both assessing the way efficiency evolved over time and pro-
viding a list of units that proved to be capable of sustaining efficiency over a long period. For this
type of analysis, it may be beneficial to model the dynamics of DEA rankings using our model. If
the long-term efficiency is of interest, it can be measured via the unconditional ranking. A major
limitation of this approach is, however, the use of the Plackett-Luce distribution, as DEA rankings
do not obey Luce’s choice axiom. Other, more complex distributions on rankings could prove more
appropriate here. For example, a richer dependence structure can be provided by Thurstone order
statistics models based on the multivariate normal distribution (see Thurstone, 1927 and Yu, 2000)
or multivariate extreme value distributions (see McFadden, 1978 and Joe, 2001). Note that the latter
class contains the Plackett-Luce model as a special case.

Modelling rankings instead of efficiency scores may also enhance the robustness with regard to
method selection. For example, a novel DEA approach utilising the Chebyshev distance proposed
by Hladík (2019) offers alternative efficiency scores to the classical DEA models of Charnes et al.
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(1978) and Banker et al. (1984), but it has been shown to produce the exact same ranking. Modelling
rankings instead of efficiency scores thus eliminates differences between the two methods.

6 Conclusion

Our new modelling approach brings two main features that have not been utilised in the analysis
of time-varying rankings so far: (i) it allows a general autoregressive scheme for the process that
governs the items’ worth parameters, and (ii) new observations can update the worth parameters
through a score-driven mechanism. Both of these features proved useful in our case study dealing
with ice hockey team rankings. We believe that empiricists in diverse application areas can benefit
from these features as well. These empiricists will hopefully also appreciate other practical merits
of the model, such as the ability to include time-varying covariates or the straightforward maximum
likelihood estimation.

This paper has presented the first results of ongoing research. Future efforts should mainly
cover the following areas. First, we hope to see more complex results regarding both finite-sample
performance and limit behavior. We doubt that comprehensive analytical treatment of the maximum
likelihood asymptotics is tractable, but we aim to extend the current simulation results substantially.
Second, for applications with a very large number of items, empiricists would surely benefit from a
specialised algorithm for likelihood maximisation that exploits the specific structure of the likelihood
function. As we mentioned above, Creal et al. (2013) and Caron and Doucet (2012) might provide
useful inspiration in this respect. Finally, for applications to rankings where ties are possible, the
model can be extended using the approach of Firth et al. (2019) and Turner et al. (2020).
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A Placket-Luce Probabilities, Log-Likelihood, and Score with Three
Items

We present an example of equations (1), (3), and (5) for the case of three items. The probability
mass function is given by

P [Y = y|f ] = exp f1st

exp f1st + exp f
2nd + exp f

3rd
· exp f

2nd

exp f
2nd + exp f

3rd
. (15)

The log-likelihood function is given by

ℓ (f |y) = f1st + f
2nd − ln

(
exp f1st + exp f

2nd + exp f
3rd
)
− ln

(
exp f

2nd + exp f
3rd
)
. (16)

The score function is given by

∇1st (f |y) = 1− exp f1st

exp f1st + exp f
2nd + exp f

3rd
,

∇
2nd (f |y) = 1− exp f

2nd

exp f1st + exp f
2nd + exp f

3rd
− exp f

2nd

exp f
2nd + exp f

3rd
,

∇
3rd (f |y) = − exp f

3rd

exp f1st + exp f
2nd + exp f

3rd
− exp f

3rd

exp f
2nd + exp f

3rd
.

(17)

It is obvious that ∇1st(f |y) +∇
2nd(f |y) +∇

3rd(f |y) = 0, as fractions in (17) with the same denomi-
nator sum to one. Moreover, it is easily seen that ∇1st ∈ (0, 1), ∇

2nd ∈ (−1, 1), and ∇
3rd ∈ (−2, 0),

as each fraction has a value between 0 and 1.
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B Deriving Properties of the Plackett-Luce Model via the Softmax
and Logsumexp Functions

The analysis of the Plackett-Luce model is facilitated by the use of the softmax and logsumexp
functions, which are denoted here as σ(·) and lse(·), respectively. In this appendix, we first employ
these functions to easily derive the shape of the likelihood and score, and then use them to study the
properties of the score.

Recall that for an n-vector z, σ(z)i = exp(zi)/
∑n

j=1 exp zj and lse(z) = log
∑n

j=1 exp zj . It is
easily verified that

log σ(z)i = zi − lse(z), (18)
∂ lse(z)

∂zi
= σ(z)i . (19)

To simplify formulas, we introduce the shorthand notation f≥r for a vector containing worth param-
eters of items ranked rth or worse, i.e., f≥r = (fi){i∈Y:y−1(i)≥r}. With this notation, we can rewrite
(1) as

P [Y = y|f ] =
N∏

r=1

σ(f≥r)r. (20)

Combining (18) and (20) immediately yields

ℓ (f |y) =
N∑

i=1

fi −
N∑

r=1

lse(f≥r), (21)

and using (19), we obtain the score for player i in the form

∇i (f |y) = 1−
y(i)∑

r=1

σ(f≥r)i . (22)

Since (i) values of the softmax function lie in the (0, 1) interval and (ii) σ(f≥N ) = 1, we can
easily establish the following bounds for the score. The score lies in (1− r, 1) for an item with rank
r = 1, . . . , N − 1, and in (1 − N, 0) for the item ranked last (N th). The bounds are tight, as the
following example with a dominant item demonstrates. Consider the identity ranking y(i) = i and
worth parameters

fi =

{
c if i = d,
−c
N−1 otherwise,

where c > 0 and d ∈ Y is a dominant item. (It is easily verified that
∑N

i=1 fi = 0.) For r ≤ min(i, d)
we obtain

lim
c→∞

σ
(
f≥r
)
i
=

{
1 if i = d,

0 otherwise.
(23)

Combining (22) and (23) yields limc→∞∇d (f |y) = 1 − d, which demonstrates that the lower
bound for the score is tight. Setting d = N (the dominant item unexpectedly ranks last) yields
limc→∞∇i (f |y) = 1 for i = 1, . . . , N − 1, which demonstrates the tightness of the upper bound of
the score for all but the last item. (The tightness of the upper bound for the last item can be shown
using a similar example with an inferior item that ranks last, as expected.)
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Abstract: An alternative approach for the panel second stage of data envelopment analysis (DEA)
is presented in this paper. Instead of efficiency scores, we propose to model rankings in the second
stage using a dynamic ranking model in the score-driven framework. We argue that this approach
is suitable to complement traditional panel regression as a robustness check. To demonstrate the
proposed approach, we determine research efficiency in the higher education sector by examining
scientific publications and analyze its relation to good governance. The proposed approach confirms
positive relation to the Voice and Accountability indicator, as found by the standard panel linear
regression, while suggesting caution regarding the Government Effectiveness indicator.
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1 Introduction

In operations research, data envelopment analysis (DEA) is a non-parametric method used to measure
the relative efficiency of decision-making units (DMUs) that convert inputs into outputs. It compares
DMUs by calculating their efficiency scores based on a set of inputs and outputs. The method has
been widely applied in the fields of agriculture, education, energy, finance, government, healthcare,
manufacturing, retail, sport, and transportation.

In DEA research, it is common to follow the efficiency measurement with a second-stage regression
analysis that uses efficiency scores as the dependent variable and includes contextual (or environmen-
tal) variables as independent variables. This approach is known as two-stage DEA. In many cases,
efficiency is assessed annually, which may require a panel regression as the second-stage model to
account for time-varying contextual variables. The most frequently employed panel methods for the
second stage are panel linear regression (see, e.g., Chen et al., 2019; Mamatzakis et al., 2013) and
panel Tobit regression (see, e.g., Borozan, 2018; Fonchamnyo and Sama, 2016). In linear regression,
log transformations of efficiency scores are often used (see, e.g., Poveda, 2011; Zhang et al., 2018).
Other panel methods include panel quantile regression (see, e.g., Frýd and Sokol, 2021; Zhang et al.,
2018), panel fractional regression (see, e.g., Da Silva e Souza and Gomes, 2015; Fonchamnyo and
Sama, 2016), and panel beta regression (see, e.g., Pirani et al., 2018; Song et al., 2016).

The standard two-stage DEA has been subject to criticism by Simar and Wilson (2007), Simar
and Wilson (2011), and Kneip et al. (2015). The criticisms mainly stem from three issues: (1)
correlation among the estimated efficiency scores due to the complex structure of the data generating
process, (2) the use of estimated efficiency scores as dependent variable instead of the true unobserved
efficiency scores, and (3) the potential inseparability between the frontier production and the impact
of contextual variables. These issues can significantly affect the validity of inference. When dealing
with repeated assessement of efficiency, there is also the issue of temporal dependence. Nevertheless,
some authors such as Banker and Natarajan (2008), McDonald (2009), and Banker et al. (2019)
argue for the use of linear regression. For a survey on statistical approaches in nonparametric frontier
models, see Moradi-Motlagh and Emrouznejad (2022).

In this paper, we present an alternative approach for the panel second stage of DEA. Instead
of modeling efficiency scores, we propose to model the rankings. In the recent literature, Holý and
Zouhar (2022) developed a time series model for rankings that utilize the Plackett–Luce distribution
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and incorporates autoregressive and score dynamics. This model is based on the modern framework
of score-driven models introduced by Creal et al. (2013) and Harvey (2013). While Holý and Zouhar
(2022) applied the model to the results of the Ice Hockey World Championships, they also suggested
its potential use in the second stage of DEA. Following this call, we devote this paper to exploring
the use of this dynamic ranking model in DEA.

The motivation for using the score-driven dynamic ranking model in the second stage of DEA
arises from the following properties:

• Relevance of Rankings. Rankings preserve the important information of mutual comparison
among DMUs. In certain scenarios, the primary objective of DEA may even be to obtain
rankings of DMUs, in which case modeling rankings directly is more appropriate. The long-
term behavior of DMUs may also be of interest, in which case the long-term ranking may have
a clearer interpretation than an aggregate of efficiency scores.

• Robustness to DEA Model. Consider two DEA models: the super-efficiency DEA model of
Andersen and Petersen (1993) and the universal DEA model of Hladík (2019), both with either
constant returns to scale (CRS) of Charnes et al. (1978) or variable returns to scale (VRS)
of Banker et al. (1984). Despite producing different efficiency scores, these models generate
the exact same ranking. By modeling rankings instead of efficiency scores in the second stage,
any differences between these models are eliminated. An additional consideration when mod-
eling efficiency scores is whether to use the logarithmic transformation. However, since the log
transformation preserves rankings, this is not a concern when using a ranking model.

• Robustness to Outliers. Outliers, in the form of extreme values of efficiency scores, can signif-
icantly influence the coefficients in a second-stage regression model. However, using rankings
can mitigate this issue, as a DMU with an extremely low or high efficiency score would simply
be ranked last or first, respectively. Thus, a ranking model can effectively handle such outliers.

• Simple yet Powerful. The model of Holý and Zouhar (2022) is straightforward to work with.
The Plackett–Luce distribution, unlike its alternatives, is available in a closed form (see Alvo
and Yu, 2014) and the dynamics are observation-driven (see Cox, 1981). As a result, the
model can be estimated using the maximum likelihood method, and conventional Hessian-based
standard errors can be used. Moreover, the model only requires a modest number of parameters,
consisting of individual effects of DMUs, regression coefficients common for all DMUs, and two
additional parameters controling dynamics common for all DMUs.

Our approach also faces the following limitations:

• Loss of Information. While using rankings instead of efficiency scores can provide robustness
to DEA model and outliers (as discussed above), it also leads to loss of information. This loss
can be beneficial in some scenarios, but it is still important to recognize that it occurs. One
drawback of using rankings alone is that it is not possible to determine the boundary between
inefficient and efficient DMUs. Efficiency scores, on the hand, provide a clear distinction between
the two groups.

• Different Data Generating Process. Our approach does not address the criticism of Simar and
Wilson (2007), Simar and Wilson (2011), and Kneip et al. (2015). Indeed, the dependence be-
tween the DMUs is not captured by the Plackett–Luce distribution, which assumes the property
known as the independence of irrelevant alternatives. The data generating process assumed by
the model of Holý and Zouhar (2022) is much simpler then the true one generated by DEA.

• Absence of Ties. The model of Holý and Zouhar (2022) has a limitation in that it does not allow
for rankings with ties. This means that in the second stage, we need to use a suitable DEA
model that can rank all DMUs, including the efficient ones. However, this can be addressed by
extending the Plackett-Luce distribution to incorporate ties, as demonstrated by Turner et al.
(2020).
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• Sufficient Variation in Rankings. A single realization of efficiency scores is often used in a second
stage regression model. A single ranking is, however, not enough for a meaningful analysis.
Repeated rankings are therefore needed, which naturally take the form of panel data. Our
approach is therefore suitable only when the time dimension is present. Even with repeated
rankings, however, the Plackett–Luce distribution requires that for any possible partition of
DMUs into two non-empty subsets, there exists at least one DMU in the second subset that is
ranked higher than at least one DMU in the first subset (see Hunter, 2004).

Our approach is fundamentally different from traditional panel regressions, but it is not intended
to replace them. Particularly when it suffers from the same shortcomings highlighted by Simar
and Wilson (2007), Simar and Wilson (2011), and Kneip et al. (2015). Instead, our approach is
best used as a complement to traditional panel regressions to provide valuable insights that are not
burdened by the problems specific to efficiency scores. This can be viewed as a form of robustness
check, where both approaches are used to provide a more complete picture of the data. Given the
controversies surrounding the second stage DEA, conducting extensive robustness checks is crucial for
ensuring the reliability and validity of the results. DEA practitioners who wish to utilize the dynamic
ranking model can do so easily using the gasmodel R package, which offers all the necessary tools for
estimation, forecasting, and simulation.

As an illustration of the proposed approach, we explore the research efficiency in higher education
of European Union (EU) countries through the analysis of scientific publications in 2005–2020. In the
first stage, we perform DEA analysis for each year independently. We use gross domestic expenditure
on R&D and the number of researchers as inputs to reflect the financial and human resources, re-
spectively. For outputs, we use the number of publications and the number of citations to reflect the
quantity and quality of scientific research, respectively. In the second stage, we investigate the influ-
ence of good governance on the research efficiency. As contextual variables, we use the six Worldwide
Governance Indicators (WGI) of Kaufmann et al. (2011), together with the gross domestic prod-
uct (GDP). We perform panel linear regression analysis of efficiency scores obtained by three DEA
models proposed by Charnes et al. (1978), Andersen and Petersen (1993), and Hladík (2019), along
with the dynamic ranking model of Holý and Zouhar (2022). All models uncover that the Voice and
Accountability indicator is significantly positively correlated with research efficiency suggesting that
participation in selecting the government, freedom of expression, freedom of association, and freedom
of media are key factors of governance influencing research efficiency. The Government Effectiveness
indicator has also positive effect, however, its significance is not confirmed by all models and this
result is therefore not robust. No other significant relations are found. By utilizing the proposed
approach in this study, we are able to assess the robustness of the relationship to the Voice and Ac-
countability indicator. However, the results also indicate caution in interpreting the findings related
to the Government Effectiveness indicator. Therefore, conducting extensive robustness checks such
as this one is important to increase the reliability of the analysis and prevent misleading conclusions.

The rest of the paper is structured as follows. In Section 2, we present three DEA models proposed
by Charnes et al. (1978), Andersen and Petersen (1993), and, Hladík (2019), which are utilized in
the subsequent analysis. In Section 3, we present details on the dynamic ranking model of Holý and
Zouhar (2022) and its estimation, along with some modifications suitable to our case. In Section 4,
we conduct an empirical study to examine research efficiency in higher education and compare the
proposed ranking approach with the traditional panel regression approach. We conclude the paper
in Section 5.

2 First Stage: Measuring Efficiency

The first stage of DEA involves determining the relative efficiency scores of the DMUs. The number
of DMUs is denoted by N . Each DMU transforms I inputs into J outputs. Let xni denote the i-th
input of the n-th DMU, and ynj denote the j-th output of the n-th DMU. The matrix of inputs is
denoted by X = (xni)

N,I
n=1,i=1, while the matrix of outputs is denoted by Y = (ynj)

N,J
n=1,j=1. The inputs

of a single DMU n are denoted by xn = (xn1, . . . , xnI)
⊺, and the outputs of a DMU n are denoted
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by yn = (yn1, . . . , ynJ)
⊺. The notation X−n represents the inputs of every DMU but n, while Y−n

represents the outputs of every DMU but n.

2.1 Basic DEA

Charnes et al. (1978) proposed the very first DEA model, which has since become one of the most
widely used DEA models to date. This model is commonly referred to as the CCR model and is
based on the assumption of constant returns to scale (CRS). The efficiency scores θCCRn are found for
each DMU n by the following linear program:

θCCRn = max
u,v

y⊺nu

subject to x⊺nv ≤ 1,

Y u−Xv ≤ 0,

u ≥ 0,

v ≥ 0,

(1)

where u and v are vectors of weights for the outputs and inputs respectively. The efficiency scores
for inefficient DMUs lie in [0, 1) and are equal to 1 for inefficient DMUs.

2.2 Super-Efficiency DEA

A shortcoming of the CCR model is that it cannot differentiate between efficient DMUs, which can
lead to the loss of valuable information. Andersen and Petersen (1993) proposed a super-efficiency
DEA to overcome this limitation. In this model, the DMU under evaluation is excluded from the
set of benchmarks, which allows efficient DMUs to achieve score greater than 1. The super-efficiency
model with CRS (labeled as the AP model) is given by the following linear program:

θAPn = max
u,v

y⊺nu

subject to x⊺nv ≤ 1,

Y−nu−X−nv ≤ 0,

u ≥ 0,

v ≥ 0.

(2)

The efficiency scores for inefficient DMUs are the same as those obtained from the CCR model, while
the scores for efficient DMUs are greater than or equal to 1.

2.3 Universal DEA

Recently, Hladík (2019) proposed a DEA formulation that focuses on a robust optimization viewpoint.
The model uses a scaled Chebyshev norm to measure efficiency as a distance to inefficiency and
inefficiency as a distance to efficiency. The scores generated by this model are universal in the sense
that they are naturally normalized, and therefore, can be compared across unrelated models. The
universal DEA model with CRS (labeled as the H model) is given by the following linear program:

θHn = max
δ,u,v

1 + δ

subject to y⊺nu ≥ 1 + δ,

x⊺nv ≤ 1− δ,

Y−nu−X−nv ≤ 0,

u ≥ 0,

v ≥ 0.

(3)
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Note that Hladík (2019) also proposed a nonlinear DEA model based on the Chebyshev norm, to
which (3) is a tight approximation. The efficiency scores for inefficient DMUs lie in [0, 1), while the
scores for efficient DMUs lie in [1, 2].

The universal DEA model is closely related to the super-efficiency DEA model of Andersen and
Petersen (1993). Hladík (2019) showed that the ranking of DMUs according to θAPn is the same as
the ranking according to θHn . However, the models are even more connected as the efficient scores
themselves can be derived by the following transformations:

θHn =
2θAPn

1 + θAPn
, θAPn =

θHn
2− θHn

. (4)

Applications of the universal DEA model include Holý and Šafr (2018), Frýd and Sokol (2021), and
Holý (2022).

3 Second Stage: Modeling Dynamic Rankings

The second stage of DEA involves identifying the factors that affect efficiency scores and measure their
impact. We assume periodic evaluation of efficiency of the same set of DMUs at times t = 1, . . . , T
with efficiency scores θt = (θ1t, . . . , θNt)

⊺. In this paper, we propose to model rankings of DMUs,
instead of their efficiency scores as is usual in the second-stage DEA. Let Rt(n) denote the rank of a
DMU n according to efficiency scores θt at time t. The complete ranking at time t is then denoted
by Rt = (Rt(1), . . . , Rt(N))⊺. The inverse of this ranking is the ordering Ot = (Ot(1), . . . , Ot(N))⊺

at time t, where Ot(r) represents the DMU with rank r at time t. We employ the dynamic ranking
model of Holý and Zouhar (2022).

3.1 Plackett–Luce Distribution

We assume that at each time t the ranking Rt follows the Plackett–Luce distribution proposed by
Luce (1959) and Plackett (1975). In the ranking literature, it is a widely used probability distribution
for random variables in the form of permutations. Each DMU n at each time t has a worth parameter
wnt ∈ R reflecting its rank at time t. The probability of a higher rank increases with a higher worth
parameter value. Specifically, the probability mass function is given by

f (Rt|wt) =
N∏

r=1

exp
(
wOt(r)t

)
∑N

s=r exp
(
wOt(s)t

) . (5)

In other words, a ranking is iteratively constructed by selecting the best DMU, followed by the
second best, the third best, and so on. At each stage, the probability of selecting a particular DMU
is proportional to the exponential of its worth parameter divided by the sum of the exponentials of
the worth parameters of all DMUs that have not been selected yet. The log-likelihood function is
given by

ℓ (wt|Rt) =
N∑

n=1

wnt −
N∑

r=1

ln

(
N∑

s=r

expwOt(s)t

)
. (6)

The score (i.e. the gradient of the log-likelihood function) is given by

∇n (wt|Rt) = 1−
Rt(n)∑

r=1

exp (wnt)∑N
s=r exp

(
wOt(s)t

) , n = 1, . . . , N. (7)

The Plackett–Luce distribution is based on the Luce’s choice axiom, which states that the proba-
bility of selecting one item over another from a set of items is not influenced by the presence or absence
of other items in the set (see Luce, 1977). This property of choice is known as the independence of
irrelevant alternatives. Clearly, this property is not met in the case of DEA as addition or removal of
DMUs from the set can influence efficiency scores and even ranking of other DMUs. As in the case of
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many second-stage models, the proposed dynamic ranking model therefore does not conform to the
complex data generating process of DEA efficiency scores and rankings. Nevertheless, the proposed
model can be a useful tool due to its simplicity when applied with caution.

3.2 Regression and Dynamics

We let the worth parameters linearly depend on K contextual variables and also include an autore-
gressive and score-driven component. The worth parameters are then given by the recursion

wnt = ωn +

K∑

k=1

βkznkt + ent, ent = φent−1 + α∇n (wt−1|Rt−1) , n = 1, . . . , N, t = 1, . . . , T, (8)

where ωn are the individual effects for each DMU n, βk are the regression parameters for the contextual
variables znkt, φ is the autoregressive parameter, and α is the score parameter for the lagged score
∇n (wt−1|Rt−1) given by (7). The model corresponds to panel regression with fixed effects and
dynamic error term. Note that the model is overparametrized as the probability mass function (5) is
invariant to the addition of a constant to all worth parameters. We therefore use standardization

N∑

n=1

ωn = 0. (9)

Our specification differs from the model of Holý and Zouhar (2022) by introducing the separate ent
component. Our specification is inspired by the regression with ARMA errors, while the specification
of Holý and Zouhar (2022) resemble the ARMAX model. In our specification, the contextual variables
influence only concurrent ranking, which is easier to interpret. Our model is also easier for numerical
estimation as ωn and φ are disconnected.

The ent component captures dynamic effects by the autoregressive term and the lagged score. The
model therefore belongs to the class of score-driven models, also known as generalized autoregressive
score (GAS) models or dynamic conditional score (DCS) models, proposed by Creal et al. (2013)
and Harvey (2013). The score can be interpreted as a measure of the fit of the Plackett–Luce model
to the observed rankings. A positive score indicates that a DMU n is ranked higher than what its
worth parameter wnt suggests, while a negative score suggests that it is ranked lower. A score of zero
indicates that the DMU is ranked as expected according to its worth parameter. Thus, the score can
be used as a correction term for the worth parameter after the ranking is observed.

3.3 Maximum Likelihood Estimation

The model is observation-driven and can be estimated by the maximum likelihood method. Let
θ = (ω1, . . . , ωN−1, β1, . . . , βK , φ, α)

′ denote the vector of the N +K +1 parameters to be estimated.
Note that ωN is obtained from (9) as ωN = −∑N−1

n=1 ωn. The maximum likelihood estimate θ̂ is then
given by

θ̂ ∈ argmax
θ

T∑

t=1

ℓ (wt|Rt) , (10)

where the log-likelihood ℓ (wt|Rt) is given by (6) and wt follow (8). The problem (10) can be numeri-
cally solved by any general-purpose algorithm for nonlinear optimization. Furthermore, the standard
errors of the estimated parameters are computed using the empirical Hessian of the log-likelihood
evaluated at θ̂.

In order for the log-likelihood to have a unique maximum, it is necessary that for any possible
partition of DMUs into two non-empty subsets, there exists at least one DMU in the second subset
that is ranked higher than at least one DMU in the first subset (see Hunter, 2004). This condition
ensures that no DMU is always ranked first, which would result in an infinite worth parameter and
violate the assumptions of maximum likelihood estimation.
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4 Empirical Study

Our empirical study aims to analyze research efficiency in the higher education sector by examining
scientific publications on a country-level basis, with a particular focus on the EU countries between
2005 and 2020. Specifically, we seek to determine whether certain aspects of good governance have a
positive impact on research efficiency.

4.1 Relevant Studies

Assessing the efficiency of research and development (R&D) is a widely studied topic in the data
envelopment analysis (DEA) literature. In Table 1, we present a list of several relevant DEA papers
and the key specifics of each study. We focus on the assessment of countries (and regions), although
similar analyses can be performed at more detailed levels of institutions (see, e.g., Jablonsky, 2016)
and projects (see, e.g., Lee et al., 2009). Typically, studies on R&D efficiency use financial resources
and human resources as the two main inputs. In terms of outputs, some studies focus on variables
related to scientific publications (such as Hung et al., 2009), some on patents (such as Cullmann
et al., 2012), while the majority consider both types of R&D-related outcomes.

4.2 Input, Output, and Contextual Variables

As inputs, we use the following variables:

• R&D Expenditure refers to the gross domestic expenditure to R&D activities performed in the
higher education sector. The unit is million purchasing power standards. Holý and Šafr (2018)
emphasize the importance of accounting for purchasing power parity when adjusting prices to
ensure meaningful comparisons between countries with varying purchasing power. This variable
reflects the financial resources.

• Number of Researchers refers to the total number of researchers employed in the higher educa-
tion sector. The unit is full-time equivalent. This variable reflects the human resources.

As outputs, we use the following variables:

• Number of Publications represents the number of articles, reviews, and conference papers pub-
lished. This variable reflects the quantity of scientific research.

• Number of Citations represents the number of citations to the published articles, reviews, and
conference papers. This variable reflects the quality of scientific research.

As contextual variables, we use the six Worldwide Governance Indicators (WGI), which Kaufmann
et al. (2011) define in the following way:

• Voice and Accountability captures perceptions of the extent to which a country’s citizens are
able to participate in selecting their government, as well as freedom of expression, freedom of
association, and a free media.

• Political Stability and Absence of Violence/Terrorism captures perceptions of the likelihood
that the government will be destabilized or overthrown by unconstitutional or violent means,
including politically-motivated violence and terrorism.

• Government Effectiveness captures perceptions of the quality of public services, the quality of
the civil service and the degree of its independence from political pressures, the quality of policy
formulation and implementation, and the credibility of the government’s commitment to such
policies.

• Regulatory Quality captures perceptions of the ability of the government to formulate and
implement sound policies and regulations that permit and promote private sector development.
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Table 1: An overview of relevant studies.
Paper: Aristovnik (2012)

Sample: 37 countries
Inputs: R&D expenditure, Researchers

Outputs: Articles, Patent applications, High-technology exports

Paper: Chen et al. (2011)
Sample: 24 countries
Inputs: R&D expenditure stocks, R&D personnel

Outputs: Journal articles, Patent applications, Royalty and licensing fees

Paper: Cullmann et al. (2012)
Sample: 28 countries
Inputs: Detailed R&D expenditure, Researchers

Outputs: Weighted and unweighted patents

Paper: Ekinci and Karadayi (2017)
Sample: 28 EU countries
Inputs: Detailed R&D expenditure, R&D personnel, Employment

Outputs: Patents granted, Publications

Paper: Han et al. (2016)
Sample: 15 Korean regions
Inputs: R&D expenditure

Outputs: Patent applications, Publications

Paper: Hung et al. (2009)
Sample: 27 countries
Inputs: R&D expenditure, Researchers

Outputs: Article share, Citation share

Paper: Holý and Šafr (2018)
Sample: 28 EU countries
Inputs: R&D expenditure, Scientist and engineers

Outputs: Citations, Patent applications

Paper: Lee and Park (2005)
Sample: 27 countries
Inputs: R&D expenditure, Researchers

Outputs: Patents, Articles, Technology balance of receipts

Paper: Roman (2010)
Sample: 14 regions of Bulgaria and Romania
Inputs: R&D expenditure, R&D personnel

Outputs: Patents

Paper: Sharma and Thomas (2008)
Sample: 22 countries
Inputs: R&D expenditure, Researchers

Outputs: Patents granted, Publications

Paper: Thomas et al. (2011)
Sample: 50 US states and the District of Columbia
Inputs: R&D expenditure

Outputs: Patents granted, Publications
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• Rule of Law captures perceptions of the extent to which agents have confidence in and abide
by the rules of society, and in particular the quality of contract enforcement, property rights,
the police, and the courts, as well as the likelihood of crime and violence.

• Control of Corruption captures perceptions of the extent to which public power is exercised for
private gain, including both petty and grand forms of corruption, as well as “capture” of the
state by elites and private interests.

Finally, we also include the following variable as a contextual variable:

• Gross Domestic Product is used to control for the economic development of a country. To filter
out the trend, we use the percentage of EU total GDP per capita based on million purchasing
power standards.

We therefore have I = 2 input variables, J = 2 output variables, and K = 7 contextual variables.
Similarly to Holý and Šafr (2018), we lag the input and contextual variables by one year, recognizing
that there is typically a delay between the input variables and the corresponding output variables.

4.3 Data Sample

Our data sample contains all N = 27 countries of EU. The outputs are taken from 2005 to 2020, while
the inputs and contextual variables are taken with a one-year lag from 2004 to 2019. We therefore
have T = 16 time periods to analyze. The source of the R&D expenditure, the number of researchers,
and the GDP is Eurostat1. There were 4 missing observations for the number of researchers of Greece
in 2004, 2008, 2009, and 2010. We have interpolated these values using linear regression. The source
of the number of documents and the number of citations is Scimago Journal & Country Rank2. The
source of the Worldwide Governance Indicators is the World Bank3.

4.4 Suitability of DEA Model

In order for efficiency scores to be interpretable, several criteria need to be met. We have adopted
the best practices in DEA as outlined by Dyson et al. (2001) and Cook et al. (2014). We begin by
establishing that the process under evaluation is well-defined. Our focus is on the research output in
the form of scientific publications. The two chosen output variables encompass both the quantity and
quality of scientific publications. While quantity is naturally quantifiable, measuring quality can be
achieved using several metrics such as the number of citations and the h-index. However, combining
indices and volume measures can pose difficulties and we have therefore decided to use the number
of citations for our analysis. The two primary resources for conducting research are funding and
personnel, both of which are represented by the two input variables we have selected. All input and
output variables are volume measures and are isotonic (i.e. increased input reduces efficiency, while
increased output increases efficiency). With a total of 4 input and output variables and 27 DMUs,
our DEA model possesses sufficient discriminatory power.

Next, we examine the homogeneity assumption. Our set of DMUs encompasses all EU countries
as of February 2020, although it should be noted that EU membership changed during the period
under observation. Specifically, Romania and Bulgaria joined in 2007, and Croatia became a member
in July 2013, whereas the United Kingdom departed in January 2020. Nevertheless, EU countries
should be considered homogeneous in terms of research due to the harmonized policies and frameworks
implemented by the European Commission, such as the European Research Area (ERA) and the
Horizon Europe program. These initiatives aim to promote collaboration and standardization among
EU member states, facilitating the dissemination of research findings and enhancing the overall quality
of scientific output.

Finally, we analyze the appropriate returns to scale. Note that EU countries exhibit considerable
variation in size, with Germany being the most populous country at 83.17 million people and Malta

1https://ec.europa.eu/eurostat/data/database
2https://www.scimagojr.com
3https://info.worldbank.org/governance/wgi
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being the least populous with a population of 0.51 million as of January 2020. Our focus is on the
higher education sector, which is composed of (1) universities, colleges of technology, and other insti-
tutions providing formal tertiary education programmes, (2) research institutes, centres, experimental
stations and clinics that have their R&D activities under the direct control of, or administered by,
tertiary education institutions (see OECD, 2015). The scientific output of a country can be seen as
the sum of outputs from these individual institutions. As a result, we assume that country size does
not have a significant impact on the relative scientific output and employ the constant returns to
scale (CRS) assumption in our analysis.

4.5 Efficiency Scores

Table 2 reports descriptive statistics of efficiency scores and ranks. Bulgaria consistently shows high
levels of efficiency across most years, which can be primarily attributed to its extremely low R&D
spending, both in absolute value and relative to the number of publications, citations and even
researchers. Romania is also found to be efficient in many years due to their relatively low R&D
spending. Cyprus has an average of 3.10 publications per researcher, the highest among all countries,
followed by Slovenia with 2.57. Moving to Western Europe, the Netherlands stands out as the country
with the highest number of citations per researcher, with an average of 81.49. The final country that
is ever found efficient in our sample is Luxembourg. Germany, as the largest country, dominate in
absolute values of all inputs and outputs; its efficiency is, however, average. At the other end of
the efficiency spectrum, we find Latvia with 0.66 publications and 9.09 citations per researcher on
average, and Lithuania with 0.61 publications and 8.82 citations per researcher on average.

4.6 Independence of Irrelevant Alternatives

As discussed in Sections 1 and 3.1, DEA rankings do not adhere to the independence of irrelevant
alternatives (IIA) assumption of the Plackett–Luce distribution. This means, among other things,
that if a DMU is removed from the set, the ranking of the remaining DMUs can change. The question
is to what extent the IIA assumption is violated in real data.

We conduct a simple experiment. We remove a single DMU from the set, compute DEA efficiency,
and compare the resulting ranking with the original ranking based on the full set of DMUs. We repeat
this process for all DMUs and time periods. Thus, we obtain a total of N · T = 432 DEA rankings.
In total, 87 percent of the rankings remain unchanged after removing a single DMU. The correlation
coefficient between the rankings based on the reduced sets and the full set is 0.9954. Naturally, the
ranking is more likely to change when DMUs with higher efficiency scores are removed. In our case,
removing countries such as Bulgaria, Cyprus, Luxembourg, Netherlands, Romania, and Slovenia –
all of which hold high ranks according to Table 2 – results in changes to the ranking across multiple
time periods. In summary, we confirm the violation of the IIA assumption in our empirical study.
Nevertheless, the extent of this violation is rather mild, as evidenced by the relatively high correlation
between rankings.

4.7 Long-Term Ranking

When conducting an analysis over multiple time periods, it can be beneficial to report the long-term
behavior. This could be done by simple aggregate statistics, as we did in Table 2. But it is also a
perfect task for our dynamic ranking model. For this purpose, we estimate the model without any
contextual variables, only in the form of a stationary time series model. We can then rank DMUs
according to the unconditional values of the worth parameters, which are simply equal to ωn. This
long-term or “ultimate” ranking is visualized in Figure 1.

4.8 Panel Regression and Ranking Model

We proceed to the second stage where we find relation between the efficiency scores or their asso-
ciated rankings and the contextual variables. For the efficiency scores, we employ standard panel
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Table 2: Descriptive statistics of efficiency scores and ranks obtained from the universal DEA model
of Hladík (2019).

H Efficiency Score Rank

Country Min Med Max Min Med Max

Austria 0.54 0.70 0.85 11 16.0 20
Belgium 0.50 0.75 0.87 8 15.0 22
Bulgaria 0.99 1.21 1.47 1 1.5 3
Croatia 0.56 0.75 0.99 5 9.0 22
Cyprus 0.73 1.17 1.32 1 2.0 14
Czechia 0.57 0.75 0.94 7 12.5 20
Denmark 0.52 0.78 0.97 4 12.0 19
Estonia 0.42 0.62 0.72 7 22.0 25
Finland 0.48 0.63 0.71 16 20.5 22
France 0.42 0.64 0.71 15 21.0 26
Germany 0.46 0.68 0.86 7 18.0 23
Greece 0.56 0.65 0.94 7 15.0 20
Hungary 0.57 0.73 0.80 5 13.5 19
Ireland 0.54 0.78 0.95 7 10.0 21
Italy 0.61 0.77 0.96 6 10.0 14
Latvia 0.25 0.47 0.64 12 25.5 27
Lithuania 0.31 0.40 0.48 25 27.0 27
Luxembourg 0.57 0.87 1.31 1 7.0 12
Malta 0.53 0.72 0.90 5 15.0 23
Netherlands 0.67 1.00 1.17 1 4.0 8
Poland 0.36 0.58 0.66 18 23.0 27
Portugal 0.44 0.50 0.66 19 24.5 26
Romania 0.77 1.00 1.21 2 4.5 13
Slovakia 0.43 0.61 0.80 11 19.5 26
Slovenia 0.84 1.00 1.16 2 4.0 6
Spain 0.52 0.58 0.74 14 20.0 25
Sweden 0.61 0.82 0.89 5 9.0 13
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Figure 1: The long-term ranking according to the dynamic ranking model.
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linear regression model with the robust estimation of the standard errors by the White method. As
dependent variable, we use the efficiency scores obtained by the basic DEA model of Charnes et al.
(1978) (denoted as CCR), the super-efficiency model of Andersen and Petersen (1993) (denoted as
AP), and the universal DEA model of Hladík (2019) (denoted as H). We also use the log transform
of the AP efficiency scores, which are equal to the logit transform of H efficiency scores,

θLognt = ln
(
θAPnt

)
= − ln

(
2

θHnt
− 1

)
. (11)

Furthermore, we use the AP efficiency scores, or equivalently the H efficiency scores, to derive rankings
of the DMUs, which serve as the dependent variable in our dynamic ranking model.

The results of the estimated models are reported in Table 3. All panel linear regression models
exhibit consistent signs of coefficients. They also all find the Voice and Accountability indicator to
be statistically significant at the 0.05 level. Furthemore, the Government Effectiveness indicator is
significant according to all panel regression models but AP. All the remaining contextual variables are
found insignificant by all models. The dynamic ranking model confirms the positive and significant
relation to the Voice and Accountability indicator, which is consistent with the results of all panel
regression models. However, regarding the Government Effectiveness indicator, the model agrees with
AP and finds it to be insignificant. The Political Stability and GDP variables have opposite signs, in
contrast to the panel regression models, but remain insignificant. It is important to note that while
the signs and significance of coefficients can be compared between the panel regression models and
the dynamic ranking model, the estimated values cannot be directly compared due to differences in
the model specifications. The coefficients φ and α, which control the dynamics, have both positive
values, as expected. The estimated value of 0.86 for φ suggests that the process is stationary, but
with high persistence over time.

The inference of the ranking model is derived using the empirical Hessian (denoted as Hess. in
Table 3). To ensure the robustness of our findings, we additionally employ the parametric bootstrap
technique to compute standard errors and p-values (denoted as Boot. in Table 3). Our bootstrap
procedure is based on 1 000 simulated samples. According to Table 3, the estimated standard errors
across the two methods are quite similar. An exception can be seen in the case of the Rule of Law
variable; the bootstrapped standard deviation is noticeably lower here. Despite this discrepancy,
the coefficient for this variable remains statistically insignificant at typical significance levels. The
p-values exhibit similar behavior, and the significance of the variables remains unchanged; only the
Voice and Accountability variable achieves significance at a lower level. Collectively, these findings
affirm the validity of inference based on the empirical Hessian within our finite sample.

4.9 Computing Environment

The empirical study was performed in R. The CCR and AP DEA efficiency scores were obtained
using the dea() and sdea() functions from the Benchmarking package. The H efficiency scores were
obtained from the AP DEA efficiency scores using transformation (4). The panel regressions were
estimated using the plm() function from the plm package with robust inference obtained using the
coeftest() function from the lmtest package. The dynamic ranking model was estimated by the
gas() and gas_bootstrap() functions from the gasmodel package. All these packages are available
on CRAN.

4.10 Discussion of Results

The results of our analysis show that the Voice and Accountability indicator has a consistently positive
and significant correlation with research efficiency across all models. This indicates that factors such
as participation in selecting the government, freedom of expression, freedom of association, and
freedom of media, which form the Voice and Accountability indicator, play a crucial role in enhancing
research efficiency. In contrast, the Government Effectiveness indicator also has a positive effect
on research efficiency, but its significance is not confirmed by all models. This suggests that while
Government Effectiveness can enhance research efficiency, it may not be as crucial as the Voice and
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Table 3: The estimated coefficients with standard errors for panel linear regressions and the dynamic
ranking model.

Efficiency Score Rank

CCR AP H Log Hess. Boot.

Voice and Accountability 0.21∗ 0.45∗ 0.24∗ 0.52∗ 3.61∗∗ 3.61∗∗∗

(0.09) (0.20) (0.10) (0.21) (1.21) (1.21)

Political Stability 0.04 0.10 0.05 0.11 −0.60 −0.60
(0.07) (0.09) (0.06) (0.16) (0.56) (0.61)

Government Effectiveness 0.23∗∗ 0.14 0.17∗ 0.39∗ 0.65 0.65
(0.08) (0.14) (0.08) (0.19) (0.63) (0.68)

Regulatory Quality −0.09 −0.15 −0.08 −0.19 −1.21 −1.21
(0.10) (0.15) (0.09) (0.20) (0.69) (0.74)

Rule of Law −0.03 −0.02 −0.01 0.02 0.02 0.02
(0.14) (0.19) (0.12) (0.27) (0.92) (0.25)

Control of Corruption −0.08 −0.14 −0.08 −0.20 −0.75 −0.75
(0.11) (0.19) (0.11) (0.24) (0.75) (0.74)

Gross Domestic Product −0.02 −0.23 −0.09 −0.19 1.08 1.08
(0.25) (0.28) (0.19) (0.42) (1.59) (1.64)

Autoregressive Parameter φ 0.86∗∗∗ 0.86∗∗∗

(0.06) (0.10)

Score Parameter α 0.96∗∗∗ 0.96∗∗∗

(0.08) (0.10)

Note: ∗∗∗p < 0.001; ∗∗p < 0.01; ∗p < 0.05
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Accountability indicator and lacks robustness. The findings of this study can inform policy decisions
and strategic planning to enhance research performance and impact, ultimately advancing knowledge
and innovation in various fields.

5 Conclusion

This paper has illustrated the usefulness of incorporating the dynamic ranking model of Holý and
Zouhar (2022) in the second stage of DEA with an application to evaluating research efficiency in
the higher education sector. The primary objective of the model is to serve as a complement to
conventional second-stage models and provide a robustness check. While the dynamic ranking model
may not be a perfect solution for all situations, it can still be a valuable addition to the DEA
researcher’s toolkit.

Future research efforts should be directed towards expanding the dynamic ranking model in two
ways. Firstly, the model should be able to incorporate ties, which may occur due to DEA models
lacking super-efficiency. Secondly, the model should be able to capture more complex interdependen-
cies between DMUs, which can be perhaps achieved by employing Thurstone order statistics models
based on the multivariate normal or multivariate extreme value distributions.
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Abstract: The price clustering phenomenon manifesting itself as an increased occurrence of specific
prices is widely observed and well-documented for various financial instruments and markets. In
the literature, however, it is rarely incorporated into price models. We consider that there are
several types of agents trading only in specific multiples of the tick size resulting in an increased
occurrence of these multiples in prices. For example, stocks on the NYSE and NASDAQ exchanges
are traded with precision to one cent but multiples of five cents and ten cents occur much more often
in prices. To capture this behavior, we propose a discrete price model based on a mixture of double
Poisson distributions with dynamic volatility and dynamic proportions of agent types. The model is
estimated by the maximum likelihood method. In an empirical study of DJIA stocks, we find that
higher instantaneous volatility leads to weaker price clustering at the ultra-high frequency. This is in
sharp contrast with results at low frequencies which show that daily realized volatility has a positive
impact on price clustering.

Keywords: High-Frequency Data, Price Clustering, Generalized Autoregressive Score Model,
Double Poisson Distribution.

JEL Classification: C22, C46, C58.

1 Introduction

Over the last two decades, there has been a growing interest in modeling prices at the highest
possible frequency which reaches fractions of a second for the most traded assets. The so-called
ultra-high-frequency data possess many unique characteristics which need to be accounted for by
econometricians. Notably, the prices are irregularly spaced with discrete values. Other empirical
properties of high-frequency prices which can be incorporated into models include intraday seasonality,
jumps in prices, price reversal, and the market microstructure noise. For related models, see, e.g.
Russell and Engle (2005), Robert and Rosenbaum (2011), Barndorff-Nielsen et al. (2012), Shephard
and Yang (2017), Koopman et al. (2017), Koopman et al. (2018), and Buccheri et al. (2021).

We focus on one particular empirical phenomenon observed in high-frequency prices – price clus-
tering. In general, price clustering refers to an increased occurence of some values in prices. A
notable type of price clustering is an increased occurrence of specific multiples of the tick size, i.e.
the minimum price change. For example, on the NYSE and NASDAQ exchanges, stocks are traded
with precision to one cent but multiples of five cents (nickels) and ten cents (dimes) tend to occur
much more often in prices. In other words, while one would expect the distribution of the second
digit to be uniform, the probability of 0 and 5 is actually higher than 0.1 for each. This behavior
can be captured by some agents trading only in multiples of five cents and some only in multiples
of ten cents. It is well documented in the literature that this type of price clustering is present in
stock markets (see, e.g. Lien et al., 2019), commodity markets (see, e.g. Bharati et al., 2012), for-
eign exchange markets (see, e.g. Sopranzetti and Datar, 2002), and cryptocurrency markets (see, e.g.
Urquhart, 2017). Moreover, price clustering does not appear only in spot prices but in futures (see,
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e.g. Schwartz et al., 2004), options (see, e.g. ap Gwilym and Verousis, 2013), and swaps (see, e.g. Liu
and Witte, 2013) as well. From a methodological point of view, almost all papers on price clustering
deal only with basic methods and descriptive statistics of the phenomenon. The only paper, to our
knowledge, that incorporates price clustering into a price model is the recent theoretical study of
Song et al. (2020) which introduced the sticky double exponential jump diffusion process to assess
the impact of price clustering on the probability of default.

Our goal is to propose a discrete dynamic model relating price clustering to the distribution of
prices and to study the high-frequency behavior of price clustering. We take a fundamentally very
different approach than Song et al. (2020) and incorporate the mechanism of an increased occurrence
of specific multiples of the tick size directly into the model. This allows us to treat the price clustering
phenomenon as dynamic and driven by specified factors rather than given. We also operate within
the time series framework rather than the theory of continuous-time stochastic processes. In contrast
to the existing literature on price modeling, we do not model log returns or price differences but
rather prices themselves. Prices are naturally discrete and positive. When represented as integers,
they also exhibit underdispersion, i.e. the variance lower than the mean. To accommodate for such
features, we utilize the double Poisson distribution of Efron (1986). It is a less known distribution as
noted by Sellers and Morris (2017) but was utilized in the context of time series by Heinen (2003),
Xu et al. (2012) and Bourguignon et al. (2019). Modeling prices directly enables us to incorporate
price clustering in the model. Specifically, we consider that prices follow a mixture of several double
Poisson distributions with specific supports corresponding to agents trading in different multiples
of the tick size. This mixture distribution has a location parameter, a dispersion parameter and
parameters determining portions of trader types. In our model, we introduce time variation to
all these parameters. We consider the location parameter to be equal to the last observed price
resulting in zero expected returns. For the dispersion parameter, we employ dynamics in the fashion
of the generalized autoregressive conditional heteroskedasticity (GARCH) model of Bollerslev (1986).
Specifically, we utilize the class of generalized autoregressive score (GAS) models of Creal et al. (2013)
and Harvey (2013) which allows to base dynamic models on any underlying distribution. In the high-
frequency literature, the GAS framework was utilized by Koopman et al. (2018) for discrete price
changes and Buccheri et al. (2021) for log prices. To account for irregularly spaced observations,
we include the last trade duration as an explanatory variable similarly to Engle (2000). Finally, we
relate the trader portion parameters to the volatility process and other variables such as the price,
the last trade duration and the volume. The resulting observation-driven model is estimated by the
maximum likelihood method.

In the empirical study, we analyze 30 Dow Jones Industrial Average (DJIA) stocks in the first
half of 2020. We first focus on price clustering from a daily perspective which is a common approach
in the price clustering literature. Using a panel regression with fixed effects, we find a positive effect
of daily volatility measured by realized kernels of Barndorff-Nielsen et al. (2008) on price clustering.
This finding is in line with the results of ap Gwilym et al. (1998); Davis et al. (2014); Box and
Griffith (2016); Hu et al. (2017); Lien et al. (2019) among others. Next, we estimate the proposed
high-frequency price model and arrive at a different conclusion – the instantaneous volatility obtained
by the model has a negative effect on price clustering. The main message of the empirical study is
therefore that the degree of aggregation plays a pivotal role in the relation between price clustering and
volatility. While high daily realized volatility correlates with high price clustering, high instantaneous
volatility has the opposite effect. The other explanatory variables have the expected effect in both
the daily and high-frequency cases – the volume has a positive effect on price clustering while the
price and the last trade duration are insignificant.

The rest of the paper is structured as follows. In Section 2, we review the literature dealing
with high-frequency price models and price clustering. In Section 3, we propose the dynamic model
accommodating for price clustering based on the double Poisson distribution. In Section 4, we use
this model to study determinants of price clustering in high-frequency stock prices. We conclude the
paper in Section 5.

4:2



2 Literature Review

2.1 Some High-Frequency Price Models

In the literature, several models addressing specifics of ultra-high-frequency data have been proposed.
One of the key issues is irregularly spaced transactions and discreteness of prices. The seminal study
of Engle and Russell (1998) proposed the autoregressive conditional duration (ACD) model to capture
the autocorrelation structure of trade durations, i.e. times between consecutive trades. Engle (2000)
combined the ACD model with the GARCH model and jointly modeled prices with trade durations.
Russell and Engle (2005) again modeled prices jointly with trade durations but addressed discreteness
of prices and utilized the multinomial distribution for price changes.

Another approach is to model the price process in continuous time. Robert and Rosenbaum (2011)
considered that the latent efficient price is a continuous Itô semimartingale but is observed at the
discrete grid through the mechanism of uncertainty zones. Barndorff-Nielsen et al. (2012) considered
the price process to be discrete outright and developed a continuous-time integer-valued Lévy process
suitable for ultra-high-frequency data. Shephard and Yang (2017) also utilized integer-valued Lévy
processes and focused on frequent and quick reversal of prices.

Transaction data at a fixed frequency can also be analyzed as equally spaced time series with
missing observations. In this setting, Koopman et al. (2017) proposed a state space model with
dynamic volatility and captured discrete price changes by the Skellam distribution. Koopman et al.
(2018) continued with this approach and modeled dependence between discrete stock price changes
using a discrete copula. Buccheri et al. (2021) also dealt with multivariate analysis and proposed a
model for log prices accommodating for asynchronous trading and the market microstructure noise.
The latter two papers utilized the GAS framework.

2.2 Price Clustering

The first academic paper on price clustering was written by Osborne (1962), where the author de-
scribed the price clustering phenomenon as a pronounced tendency for prices to cluster on whole
numbers, halves, quarters, and odd one-eighths in descending preference, like the markings on a
ruler. Since then, there have been many studies focusing on this phenomenon – from Niederhoffer
(1965) to very recent papers of Li et al. (2020), Song et al. (2020), and Das and Kadapakkam (2020)
– showing that price clustering is remarkably persistent in time and across various markets.

Song et al. (2020) pointed out that, however, all studies are entirely focused on empirically exam-
ining price clustering in different financial markets. Except for the purely theoretical paper of Song
et al. (2020) proposing the sticky double exponential jump-diffusion process to analyze the probabil-
ity of default for financial variables, the studies related to price clustering are based on basic general
methods and do not aim to incorporate the phenomenon into the dynamic price model.

The prevalent approach to price clustering examination is a linear regression model estimated by
ordinary least squares (OLS) method. Ball et al. (1985), Kandel et al. (2001), and from the recent
literature Urquhart (2017), Hu et al. (2019), and Li et al. (2020), used the classical regression with
dummy variables to estimate frequency of each level of rounding. The vast of the literature regressed
price clustering on explanatory variables such as volatility and trade size, where price clustering is
defined as the excess occurrence of multiples of nickles or dimes (see, e.g. Schwartz et al., 2004
and Ikenberry and Weston, 2008 followed by Chung and Chiang, 2006, Brooks et al., 2013, and Hu
et al., 2017) or simply their frequency (see, e.g. Palao and Pardo, 2012 and Davis et al., 2014).
However, different definitions of the dependent variable representing price clustering can be found in
the literature. Baig et al. (2019) defined the clustering as a sum of round clustering at prices ending
by digit 0 and strategic clustering measured as a number of trades which decimals are equal to 01
or 99. ap Gwilym and Verousis (2013) defined the dependent variable as the percentage of price
observations at integers, whereas ap Gwilym et al. (1998) estimated the percentage of trades that
occur at an odd tick. Ahn et al. (2005) regressed abnormal even price frequencies in transaction and
quote prices on the firm and trading characteristics, and similarly, Chiao and Wang (2009) performed
the analysis on the limit-order data. Cooney et al. (2003) estimated cross-sectional regressions of
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the difference in the percentage of even and odd limit orders on stock price and proxies for investor
uncertainty.

Several extensions of the OLS method were employed to overcome certain issues. Verousis and
ap Gwilym (2013) and Mishra and Tripathy (2018) argued that one encounters a simultaneity issue
between trade size and price clustering when striving to examine a causal relationship between them.
Hence, Verousis and ap Gwilym (2013) followed by Mishra and Tripathy (2018) used the two-stage
least squares (2SLS) method. Moreover, to reflect the endogeneity of quote clustering in the spread
model and the endogeneity of the spread in the quote clustering model, Chung et al. (2004, 2005)
estimated a structural model using three-stage least squares (3SLS) method. Meng et al. (2013) used
the 3SLS method to formally examine the hypothesis of a substitution effect between price clustering
and size clustering in the CDS market. Finally, Mbanga (2019) estimated robust regressions that
eliminate gross outliers to examine the day-of-the-week effect in Bitcoin price clustering.

Another direction arises from the need to analyze panel data. The prevailing approach is a fixed
effects regression. Das and Kadapakkam (2020) included both firm and time fixed effects, whereas
Box and Griffith (2016) included fixed effects only for time and report that once they also included
firm fixed effects, the results remained unchanged. Blau (2019) and Blau and Griffith (2016) included
month and year fixed effects respectively, and used robust standard errors that account for clustering
across both the cross-sectional observations and time-series observations. On the other hand, Ohta
(2006) picked random effects model over the fixed effects model based on the results from the Hausman
specification test.

A substantial part of the literature models price clustering as a binary variable. For that case,
the straightforward approach is to use the logit or probit model. From one of the first papers using
logistic regression to analyze price clustering, Ball et al. (1985) modeled three dependent variables
taking value 1 if the price is rounded to the whole dollar, half-dollar, or quarter, respectively. Christie
and Schultz (1994) estimated logistic regressions that predict the probability of a firm being quoted
using odd eighths. Aitken et al. (1996) employed multivariate logistic regression to model three
binary dependent variables that are equal to one if the final digit is 0; 0 or 5; and 0, 2, 4, 6, or 8
(even numbers), respectively. Brown and Mitchell (2008) examined the influence of Chinese culture
on price clustering by logistic regressions where a binary dependent variable is equal to 1 if the last
sale price ends in 4 and 0 if it ends in 8 since many Chinese consider the number 8 as lucky while 4
is considered as unlucky. From the literature employing probit models, Kahn et al. (1999) analyzed
the propensity to set retail deposit interest rates at integer levels and Sopranzetti and Datar (2002)
analyzed the propensity for exchange rates to cluster on even digits. Moreover, Capelle-Blancard
and Chaudhury (2007) modeled a binary dependent variable that is equal to one if the transaction
price ends with 00, whereas Liu (2011) and Narayan and Smyth (2013) set the variable equal to one
if the price ends at either 0 or 5, and 0 otherwise. Alexander and Peterson (2007) followed by Lien
et al. (2019) used a bivariate probit model to take into account the dependence between price and
trade-size clustering.

Finally, Blau (2019) estimated a vector autoregressive process and examined the impulses of price
clustering in response to an exogenous shock to investor sentiment. Besides the classical regression
approaches, Harris (1991) and Hameed and Terry (1998) analyzed the cross-sectional data by static
discrete price model.

To the best of our knowledge, the literature still lacks a discrete dynamic model to study the
high-frequency behavior of the price clustering. Thus, in the next section, we propose a novel model
which models high-frequency prices directly at the highest possible frequency and allows us to study
the main drivers of price clustering such as price, volatility, volume, and trading frequency in the
form of trade durations.
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3 Dynamic Price Clustering Model

3.1 Double Poisson Distribution

Let us start with the static version of our model for prices. In the first step, we transform the observed
prices to have integer values. For example, on the NYSE and NASDAQ exchanges, the prices are
recorded with precision to two decimal places and we therefore multiply them by 100 to obtain integer
values. The minimum possible change in the transformed prices is 1. Empirically, the transformed
prices exhibit strong underdispersion, i.e. the variance lower than the mean. In our application,
the transformed prices are in the order of thousands and tens of thousands while the price changes
are in the order of units and tens. We therefore need to base our model on a count distribution
allowing for underdispersion. For a review of such distributions, we refer to Sellers and Morris (2017).
Although not without its limitations, the double Poisson distribution is the best candidate for our case
as the alternative distributions have too many shortcomings. For example, the condensed Poisson
distribution is based on only one parameter, the generalized Poisson distribution can handle only
limited underdispersion and the gamma count distribution as well as the Conway–Maxwell–Poisson
distribution do not have the moments available in a closed form.

The double Poisson distribution was proposed in Efron (1986) and has a location parameter µ > 0
and a dispersion parameter α. We adopt a slightly different parametrization than Efron (1986) and
use the logarithmic transformation for the dispersion parameter making α unrestricted. For α = 0,
the distribution reduces to the Poisson distribution. Values α > 0 result in underdispersion while
values α < 0 result in overdispersion. Let Y be a random variable and y an observed value. The
probability mass function is given by

P[Y = y|µ, α] = 1

C(µ, α)

yy

y!

(
µ

y

)eαy
e

α
2
+eαy−eαµ−y, (1)

where C(µ, α) is the normalizing constant given by

C(µ, α) =
∞∑

y=0

yy

y!

(
µ

y

)eαy
e

α
2
+eαy−eαµ−y. (2)

The log likelihood for observation y is then given by

ℓ(y;µ, α) = − ln (C(µ, α)) + y ln(y)− ln(y!) + eαy ln

(
µ

y

)
+
α

2
+ eαy − eαµ− y. (3)

Unfortunately, the normalizing constant is not available in a closed form. However, as Efron (1986)
shows, it is very close to 1 (at least for some combinations of µ and α) and can be approximated by

C(µ, α) ≃ 1 +
1− eα

12eαµ

(
1 +

1

eαµ

)
. (4)

Zou et al. (2013) notes that approximation (4) is not very accurate for low values of the mean and
suggest approximating the normalizing constant alternatively by cutting off the infinite sum, i.e.

C(µ, α) ≃
m∑

y=0

yy

y!

(
µ

y

)eαy
e

α
2
+eαy−eαµ−y, (5)

wherem should be at least twice as large as the sample mean. In our case of high mean, approximation
(4) is sufficient while approximation (5) would be computationally very demanding and we therefore
resort to the former one. The expected value and variance can be approximated by

E[Y ] ≃ µ, var[Y ] ≃ µe−α. (6)

The score can be approximated by

∇(y;µ, α) ≃
(
eα

µ
(y − µ), eα (y ln(µ)− µ− y ln(y) + y) +

1

2

)′
. (7)
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The Fisher information can be approximated by

I(µ, α) ≃
( eα

µ 0

0 1
2

)
. (8)

3.2 Mixture Distribution for Price Clustering

Next, we propose a mixture of several double Poisson distributions corresponding to trading in dif-
ferent multiples of tick sizes accommodating for price clustering. We consider that there are three
types of traders – one who can trade in cents, one who can trade only in multiples of 5 cents, and
one who can trade only in multiples of 10 cents. In Appendix A, we treat a more general case with
any number of trader types and tick size multiples. The distribution of prices corresponding to each
trader type is based on the double Poisson distribution modified to have support consisting only of
multiples of k ∈ {1, 5, 10} while keeping the expected value E[Y ] ≃ µ and the variance var[Y ] ≃ µe−α

regardless of k. For a detailed derivation of the distribution, see Appendix A. The distribution of
prices for trader type k ∈ {1, 5, 10} is given by

P
[
Y [k] = y

∣∣∣µ, α
]
= I {k | y}P

[
Z [k] =

y

k

∣∣∣µ, α
]
, Z [k] ∼ DP

(µ
k
, α+ ln(k)

)
, (9)

where DP denotes the double Poisson distribution and I {k | y} is equal to 1 if y is divisible by k
and 0 otherwise. Note that for k = 1, it is the standard double Poisson distribution. Finally, the
distribution of all prices is the mixture

P [Y = y|µ, α, φ1, φ5, φ10] =
∑

k∈{1,5,10}
φkP

[
Y [k] = y

∣∣∣µ, α
]
, (10)

where the parameter space is restricted by µ > 0, φ1 ≥ 0, φ5 ≥ 0, φ10 ≥ 0 and φ1 + φ5 + φ10 = 1.
Parameters φk, k ∈ {1, 5, 10}, are the portions of trader types and parameters µ with α have the same
interpretation as in the double Poisson distribution. The log likelihood for observation y is given by

ℓ (y;µ, α, φ1, φ5, φ10) = eαy ln

(
µ

y

)
+
α

2
+ eαy − eαµ

+ ln


 ∑

k∈{1,5,10}
φkI {k|y}

√
k

C
(µ
k , kα

)
( y
k

) y
k

( y
k

)
!
e−

y
k


 .

(11)

Note that the last logarithm in (11) is not dependent on parameters µ and α besides the normalizing
constant making the approximation of the score quite simple. Additionaly, parameters φ1, φ5 and
φ10 appear only in the last logarithm in (11) making the approximation of the score for parameters µ
and α independent of parameters φ1, φ5 and φ10. The approximations of the expected value and the
variance as well as the score and the Fisher information for the parameters µ and α of the mixture
distribution are therefore the same as for the regular double Poisson distribution presented in (6),
(7), and (8) respectively when assuming C(µ/k, kα) = 1.

Figure 1 illustrates the probability mass function of the mixture distribution. As an example, we
choose the portions of trader types as φ1 = 0.95, φ5 = 0.02, and φ10 = 0.03. The majority of traders
therefore operate at one cent precision but some are restricted to trading in only five or ten cents,
similarly to the observed behavior in the empirical study. The mixture distribution is based on the
regular double Poisson distribution with all probabilities decreased by 5 percent. Prices ending with 5
or 0 are then inflated according to distribution given by (9) for k = 5 with all probabilities decreased
by 98 percent. Finally, prices ending with 0 are further inflated according to distribution given by
(9) for k = 10 with all probabilities decreased by 97 percent. Figure 1 shows how the probabilities
can be decomposed for the three trader types.
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Figure 1: Illustration of the probability mass function for the mixture double Poisson distribution
with parameters µ = 10 013 (left plot), µ = 10 005 (right plot), α = 7, φ1 = 0.95, φ5 = 0.02, and
φ10 = 0.03. The prices are reported in the original form with two decimal places.

3.3 Dynamics of Time-Varying Parameters

Finally, we introduce time variation into parameters µ, α, φ1, φ5, φ10. We denote the random prices
as Yt ∈ N0, t = 1, . . . , n and the observed values as yt ∈ N0, t = 1, . . . , n. We also utilize observed
trade durations zt ∈ R+, t = 1, . . . , n and observed volumes vt ∈ R+, t = 1, . . . , n. We assume that Yt
follow the mixture double Poisson distribution proposed in Section 3.2 with time-varying parameters
µt, αt, φ1,t, φ5,t and φ10,t. The dynamics of the location parameter µt is given by

µt = yt−1. (12)

This means that the expected value of the price is (approximately) equal to the last observed price,
i.e. the expected value of the return is zero. This is a common assumption for high-frequency returns
(see, e.g. Koopman et al., 2017).

For the dynamics of the dispersion parameter αt, we utilize the generalized autoregressive score
(GAS) model of Creal et al. (2013), also known as the dynamic conditional score (DCS) model by
Harvey (2013). The GAS model is an observation-driven model providing a general framework for
modeling time-varying parameters for any underlying probability distribution. It captures dynam-
ics of time-varying parameters by the autoregressive term and the score of the conditional density
function. Blasques et al. (2015) investigated information-theoretic optimality properties of the score
function and showed that only parameter updates based on the score will always reduce the local
Kullback–Leibler divergence between the true conditional density and the model-implied conditional
density. Creal et al. (2013) suggested to scale the score based on the Fisher information. As the
Fisher information for the parameter αt is constant in our case, the score is already normalized and
we therefore omit the scaling. Using (7) and (12), we let the dispersion parameter αt follow the
recursion

αt = c+ bαt−1 + a

(
eαt−1

(
yt−1 ln

(
yt−2

yt−1

)
− yt−2 + yt−1

)
+

1

2

)
+ d ln(zt), (13)

where c is the constant parameter, b is the autoregressive parameter, a is the score parameter and
d is the duration parameter. This volatility dynamics corresponds to the generalized autoregressive
conditional heteroskedasticity (GARCH) model of Bollerslev (1986). Similarly to Engle (2000), we
also include the preceding trade duration zt as an explanatory variable to account for irregularly
spaced observations. To prevent extreme values of durations, we use the logarithmic transformation.
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The portions of trader types are driven by process

ηt = fηt−1 + g1 ln(µt) + g2 (ln(µt)− αt) + g3 ln(zt) + g4 ln(vt), (14)

where f is the autoregressive parameter, g1 is the parameter for the logarithm of the expected price,
g2 is the parameter for the logarithm of the variance of the price process µte−αt , g3 is the parameter
for the logarithm of the preceding trade duration, and g4 is the parameter for the logarithm of the
volume vt. The portions of trader types are then standardized as

φ1,t =
eηt

eηt + h5 + h10
, φ5,t =

h5
eηt + h5 + h10

, φ10,t =
h10

eηt + h5 + h10
, (15)

where h5 ≥ 0 and h10 ≥ 0 are parameters capturing representation of 5 and 10 trader types. The
model can be straightforwardly extended to include additional explanatory variables in (13) and (14).

3.4 Maximum Likelihood Estimation

The proposed model based on the mixture distribution for price clustering (10) with dynamics given
by (12), (13) and (15) can be straightforwardly estimated by the conditional maximum likelihood
method. Let θ = (c, b, a, d, f, g1, g2, g3, g4, h5, h10)

′ denote the static vector of all parameters. The
parameter vector θ is then estimated by the conditional maximum likelihood

θ̂ ∈ argmax
θ

n∑

t=1

ℓ (yt;µt, αt, φ1,t, φ5,t, φ10,t) , (16)

where ℓ(yt;µt, αt, φ1,t, φ5,t, φ10,t) is given by (11).
Note that process (12) implies non-stationarity of our model, even though our main focus is on

processes (13) and (14), in which we assume b < 1 and f < 1, respectively. This reflects a commonly
used assumption of non-stationarity of prices. Non-stationary GAS models were discussed and applied
e.g. by Gorgi et al. (2019), Harvey et al. (2019), and Holý and Zouhar (2022). In our case, the use of
a non-stationary model is necessary as we require to model prices directly in order to capture price
clustering.

For the numerical optimization in the empirical study, we utilize the PRincipal AXIS algorithm
of Brent (1972). To improve numerical performance, we standardize the explanatory variables to unit
mean. We also run the estimation procedure several times with different starting values to avoid local
maxima.

4 Empirical Results

4.1 Data Sample

The empirical study is conducted on transaction data extracted from the NYSE TAQ database which
contains intraday data for all securities listed on the New York Stock Exchange (NYSE), American
Stock Exchange (AMEX), and Nasdaq Stock Market (NASDAQ). We analyze 30 stocks that form the
Dow Jones Industrial Average (DJIA) index in June 2020. The extracted data span over six months
from January 2 to June 30, 2020, except for Raytheon Technologies (RTX)1 for which the data are
available from April 3, 2020.

We follow the standard cleaning procedure for the NYSE TAQ dataset described in Barndorff-
Nielsen et al. (2009) since data cleaning is an important step of high-frequency data analysis (Hansen
and Lunde, 2006). Before the standard data pre-processing is conducted, we delete entries that are
identified as preferred or warrants (trades with the non-empty suffix indicator). Then we follow a
common data cleaning steps and discard (i) entries outside the main opening hours (9:30 – 16:00), (ii)
entries with the transaction price equal to zero, (iii) entries occurring on a different exchange than

1The RTX company results from the merge of the United Technologies Corporation and the Raytheon Company on
April 3, 2020.
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it is primarily listed, (iv) entries with corrected trades, (v) entries with abnormal sale condition, (vi)
entries for which the price deviated by more than 10 mean absolute deviations from a rolling centered
median of 50 observations, and (vi) duplicate entries in terms of the time stamp. In the last step, we
remain the entry with mode price instead of the originally suggested median price due to avoiding
distortion of the last decimal digit of prices.

The first and last step has a negligible impact on our data and steps ii, iv, and vi have no impact
at all. However, the third step causes a large deletion of the data which is, however, in line with
Barndorff-Nielsen et al. (2009). The basic descriptive statistics after data pre-processing are shown
in Appendix B. Number of observations ranges from 216 618 (TRV) to 3 099 279 (MSFT). Price
clustering in terms of the excess occurrence of multiples of five cents and ten cents in prices ranges
from 1.45 % (KO) to 11.52 % (BA). First, we analyze the price clustering using a common approach
of fixed effects model on daily data in Section 4.2 to investigate whether the results for our dataset are
in line with the existing literature. Then, we estimate the proposed dynamic price model in Section
4.3.

4.2 Analysis Based on Daily Data

In this section, we investigate the main determinants of price clustering for which pervasive evidence is
documented in the literature, namely price, volatility, trading frequency (which we measure in terms
of trade durations), and volume. We use a panel regression with fixed effects to take into account the
unobserved heterogeneity in both dimensions – stocks and days.

Let us define price clustering pi,t as the excess relative frequency of multiples of five cents and ten
cents in prices of stock i at day t. We model pi,t as

pi,t = γi + δt + β1 ln(µi,t) + β2 ln(αi,t) + β3 ln(zi,t) + β4 ln(vi,t) + εi,t, (17)

where γi is a stock specific effect for the stock i, δt is a time effect for day t, and εi,t is the error
term. Parameters β1 – β4 corresponds to logarithmic explanatory variables, where µi,t is an average
price, zi,t is an average duration and vi,t is an average volume, where all averages are calculated for
each stock i at each day t. Daily volatility αi,t is estimated by realized kernel estimator of Barndorff-
Nielsen et al. (2008). We use Parzen kernel as suggested by Barndorff-Nielsen et al. (2009). See Holý
and Tomanová (2023) for a comprehensive overview of quadratic covariation estimators.

Table 1 reports estimated coefficients of three variants of the fixed effects model. The first variant
models price clustering on price, volatility and duration, i.e. model in (17) where volume is skipped.
The second model considers only the price, duration and volume as the explanatory variables, and the
third one is the full model in (17). We test the significance of the estimated coefficients using robust
standard errors for which observations are clustered in both dimensions to account for serial as well
as cross-sectional correlation. For illustration, Figure 2 shows fitted lines from univariate regressions
with stock specific effects2 for two stocks traded on NASDAQ – Apple Inc. (AAPL) and Microsoft
(MSFT) – and two stocks traded on NYSE – Boeing (BA) and Visa Inc. (V). Figure 2 aims to depict
the presence of the stock specific effects: in descending order, BA, AAPL and MSFT have the highest
level of price clustering while V represents a stock with an average level of price clustering from our
Dow Jones dataset.

The results show that volatility is a highly significant driver of price clustering. Moreover, the
effect is positive, which is in line with the overwhelming majority of literature, in particular, with the
so-called price resolution hypothesis. We refer to Section 4.4 for a literature review on this topic and
related implications of our models. Next, Table 1 shows that volume is also highly significant and has
a positive effect on price clustering according to expectations. For example, this is in line with results
from the panel data analysis of Das and Kadapakkam (2020) and Box and Griffith (2016). Das and
Kadapakkam (2020) suggested that the reason behind the significantly positive effect is algorithmic
trading: as the trades become smaller in size due to increased algorithmic trading, lower levels of
price clustering are observed.

2Time effects are dropped for better visibility which does not alter the main result.
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Table 1: Estimated coefficients and robust standard errors of models with fixed effects for stocks and
days. Label I refers to the model in (17) for which the volume parameter β4 = 0; II to the model in
(17) for which the volatility parameter β2 = 0; III to the full model in (17).

Variable I II III

Price −1.7014∗∗∗ −0.8067 −0.1245
(0.5469) (0.6615) (0.5323)

Volatility 0.5900∗∗∗ 0.7008∗∗∗

(0.1901) (0.1622)

Duration −0.0973 −0.4640∗∗∗ −0.0069
(0.1672) (0.1347) (0.1739)

Volume 3.7544∗∗∗ 3.9557∗∗∗

(0.4869) (0.5025)

∗p<0.05; ∗∗p<0.01; ∗∗∗p<0.001

The volatility is negatively correlated with duration, however, the duration does not bring addi-
tional information since it is no longer significant once the volatility is added in the model (see Model
II vs. III). A similar result applies for volume and price (see Model I vs. III), where price turns to
be insignificant once the volume is added to the model. We conclude that based on our model using
daily data: (i) we do not find a significant effect of duration and price level on price clustering; (ii)
the volatility and volume have highly significant positive effects on price clustering which are in line
with expectations.

4.3 High-Frequency Analysis

Let us analyze the price clustering phenomenon at the highest possible frequency. First, we take
a brief look at the relation between the individual explanatory variables and price clustering. We
focus on the BA stock as its price clustering is the most pronounced. Figure 3 shows the average
expected price, the average instantaneous variance obtained from the dynamic model, the average
duration preceding the trade, and the average volume broken down by the second decimal of the price
for the BA stock. We can clearly see that for prices ending with 0 and 5, the average variance and
the average trade duration is much lower than for the other digits while the average volume is much
higher. Note that succeeding durations show very similar behavior to preceding durations suggesting
that price clustering tends to occur when trading is more intense.

Next, we estimate three versions of the proposed price clustering model for each of the 30 stocks.
In the first version, we assume that there is no price clustering and set f = g1 = g2 = g3 = g4 =
h5 = h10 = 0. In the second version, we set only f = g1 = g2 = g3 = g4 = 0 and assume that
there is price clustering present but is constant over time and does not depend on any variables. The
third version is the dynamic model presented in Section 3.3 without any restrictions. We report the
average log-likelihood and the Akaike information criterion (AIC) of the models in Table 2. We can
see that adding price clustering to the model and subsequently adding dynamics to price clustering is
very much worth of the extra few parameters as AIC is distinctly the lowest for the dynamic model
for all stocks.

From now on we focus on the model with dynamic price clustering. Table 3 reports the estimated
coefficients. We do not report standard deviations as they are very close to zero and all coefficients
are significant at any reasonable level due to a huge number of observations. For all stocks, the
coefficients in the volatility process c, b, a, and d have the same signs and fairly similar values
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Figure 2: Daily data of four selected stocks and fitted lines from univariate panel regressions of
price clustering on logarithmic price (top left), logarithmic volatility (top right), logarithmic duration
(bottom left) and logarithmic volume (bottom right). All models are estimated with stock fixed
effects.
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demonstrating the robustness of the model. Parameter d is negative, which means that with longer
durations, dispersion parameter αt is lower and the instantaneous variance µt exp(−αt) is higher. We
attribute this behavior to the presence of a large amount of extremely short durations associated with
small price changes. Note that for example, the BA stock has 50 percent of durations shorter than
0.1 seconds and 19 percent shorter than 0.0001 seconds. Engle (2000) observed the opposite relation
between trade durations and volatility but based his results on data with a much lower frequency
and without durations shorter than 1 second. This might indicate a change in the data structure
over the years and a complex non-linear relation between trade durations and volatility. This topic
is, however, beyond the scope of this paper.

Regarding the dynamics of price clustering, the autoregressive parameter f is stable across all
stocks. The parameter for the expected price g1 significantly varies for different stocks suggesting its
low informative value. This is in line with the daily analysis in which prices were found insignificant.
The parameter for the instantaneous variance g2 is positive for all stocks. The portion of one cent
traders is therefore higher with higher variance and price clustering tends to occur when prices are
less volatile. This is the most interesting result as it deviates from the behavior observed in the
daily analysis. The parameter for the preceding trade duration g3 significantly varies for different
stocks, similarly to g1. When the preceding trade duration is the only explanatory variable included
in the model, however, g3 is positive for all stocks. Recall that durations have a positive effect on
instantaneous variance as d is positive for all stocks. This implies that durations have an effect on
instantaneous variance which in turn has an effect on price clustering. However, when controlling
for instantaneous variance, durations do not bring additional information to explain price clustering.
These observations are in line with the daily analysis. Finally, the parameter for the volume g4 is
negative for all stocks. As in the daily analysis, higher volume is clearly associated with higher price
clustering.

We omit parameters h5 and h10 controlling strength of price clustering from Table 3 as they are
not very informative for readers. It is far better to look at the average values of trader portions φ̄1,
φ̄5 and φ̄10 reported in Table 4. The average portion of ten-cent traders ranges from 0.48 percent
for the TRV stock to 10.54 percent for the BA stock. The average portion of five-cent traders ranges
from 0.34 percent for the TRV stock to 3.63 percent for the BA stock. An example of the progression
of trader type ratios is shown in Figure 4 for the BA stock on the first trading day of 2020.

As a benchmark, we compare the proposed model with the GARCH model based on the Student’s
t-distribution of Bollerslev (1987). For each stock, we estimate three specifications based on prices,
price differences, and logarithmic returns. The direct use of prices results in a non-stationary model,
similarly to the proposed model. As our goal is to compare models based on different data transfor-
mations, we report their log-likelihoods with respect to the original discrete prices. This approach is
used, e.g., by Blasques et al. (2022). Table 5 reports the fit of the GARCH models. Based on these
results, we cannot unambiguously determine which model is the best. The GARCH models perform
better for 18 stocks while the proposed price clustering model performs better for 12 stocks. Among
the GARCH models, the one based on price differences has the highest log-likelihood for 17 stocks.
We can conclude that the performance of our proposed model is comparable to the GARCH model
based on the Student’s t-distribution, regardless of the price transformation.

4.4 Implications

Several hypotheses have been established to explain the price clustering phenomenon. The attraction
hypothesis of Goodhart and Curcio (1991) essentially states that there exists a particular preference
(basic attraction) for certain numbers, especially for the rounded ones. The negotiation hypothesis of
Harris (1991) assumes that traders use discrete price sets to lower the costs of negotiating. Once the
set of prices is reduced, the traders reach agreements more easily since the amount of information
that must be exchanged between negotiating traders decreases. Christie and Schultz (1994) argued in
the collusion hypothesis that the lack of odd-eighth quotes on NASDAQ cannot be explained by the
negotiation hypothesis, trading activity, or other variables thought to impact spreads, which suggests
that NASDAQ dealers might implicitly collude to maintain wide spreads. However, assessing these
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Figure 3: The average price (top left), the average standard deviation (top right), the average preced-
ing trade duration (bottom left), and the average volume (bottom right) broken down by the second
decimal digit of the BA stock prices.
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Table 2: The average log-likelihood and AIC of the model without price clustering, the model with
static price clustering, and the model with dynamic price clustering.

No PC Static PC Dynamic PC
Stock Lik. AIC Lik. AIC Lik. AIC

AAPL -2.3548 12 080 434 -2.3292 11 949 022 -2.2953 11 775 068
AXP -2.5117 2 284 414 -2.5054 2 278 659 -2.5008 2 274 477
BA -2.8677 10 745 431 -2.8146 10 546 574 -2.7980 10 484 266
CAT -2.6144 2 092 986 -2.6090 2 088 625 -2.6066 2 086 695
CSCO -0.4650 1 525 535 -0.4636 1 520 852 -0.4606 1 510 984
CVX -2.1513 4 094 545 -2.1476 4 087 384 -2.1444 4 081 369
DIS -2.1382 5 620 020 -2.1295 5 597 162 -2.1231 5 580 359
DOW -1.6701 1 981 601 -1.6685 1 979 699 -1.6668 1 977 626
GS -3.1560 2 292 436 -3.1500 2 288 064 -3.1460 2 285 185
HD -3.1018 3 043 787 -3.0969 3 039 026 -3.0935 3 035 655
IBM -2.4432 2 689 846 -2.4393 2 685 501 -2.4360 2 681 876
INTC -0.8455 3 165 039 -0.8442 3 160 026 -0.8407 3 147 091
JNJ -2.3836 3 976 323 -2.3809 3 971 919 -2.3794 3 969 402
JPM -2.0310 5 831 271 -2.0264 5 817 872 -2.0220 5 805 430
KO -1.2238 2 758 822 -1.2230 2 757 081 -1.2212 2 753 113
MCD -2.9611 2 787 186 -2.9563 2 782 675 -2.9526 2 779 159
MMM -2.7229 2 356 746 -2.7180 2 352 455 -2.7149 2 349 844
MRK -1.7024 3 763 397 -1.7011 3 760 622 -1.6998 3 757 820
MSFT -1.7431 10 325 970 -1.7315 10 257 392 -1.7096 10 127 509
NKE -2.1331 2 878 657 -2.1310 2 875 789 -2.1292 2 873 371
PFE -0.8423 2 403 152 -0.8415 2 400 862 -0.8398 2 396 048
PG -2.3049 3 882 847 -2.3024 3 878 712 -2.3007 3 875 756
RTX -1.7279 1 602 691 -1.7238 1 598 954 -1.7207 1 596 096
TRV -2.7871 1 135 714 -2.7861 1 135 292 -2.7848 1 134 797
UNH -3.3882 3 716 005 -3.3834 3 710 792 -3.3816 3 708 786
V -2.6542 5 058 066 -2.6485 5 047 243 -2.6434 5 037 606
VZ -1.3165 3 025 851 -1.3156 3 023 684 -1.3141 3 020 201
WBA -1.1807 1 507 681 -1.1787 1 505 148 -1.1748 1 500 227
WMT -2.1291 3 718 970 -2.1262 3 714 030 -2.1233 3 708 967
XOM -1.1969 4 893 716 -1.1951 4 886 388 -1.1895 4 863 486
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Table 3: Estimated coefficients of the proposed dynamic price clustering model. Specifically, c is
the constant parameter, b is the autoregressive parameter, a is the score parameter, and d is the
duration parameter, which enter the dynamic equation for the dispersion parameter αt. Further, f
is the autoregressive parameter, g1 is the parameter for the logarithm of the expected price, g2 is the
parameter for the logarithm of the variance of the price process µte−αt , g3 is the parameter for the
logarithm of the preceding trade duration, and g4 is the parameter for the logarithm of the volume
vt, which enter the process for the portions of trader types.

Stock c b a d f g1 g2 g3 g4

AAPL 6.09 0.08 0.29 -0.40 0.66 -0.33 0.61 -0.11 -0.69
AXP 5.32 0.10 0.35 -0.28 0.34 1.05 0.05 0.06 -0.74
BA 5.00 0.09 0.30 -0.29 0.39 -0.14 0.18 0.03 -0.71
CAT 5.60 0.04 0.26 -0.27 0.25 -0.28 0.29 -0.00 -0.71
CSCO 6.11 0.17 0.08 -0.35 0.81 0.28 0.40 -0.08 -0.37
CVX 5.79 0.11 0.35 -0.26 0.36 0.70 0.28 0.02 -0.64
DIS 6.05 0.12 0.33 -0.25 0.39 0.45 0.21 0.05 -0.64
DOW 5.71 0.15 0.33 -0.22 0.34 0.55 0.18 0.04 -0.70
GS 4.89 0.05 0.27 -0.31 0.29 1.06 0.12 0.02 -0.90
HD 5.01 0.08 0.29 -0.28 0.29 0.64 0.10 0.05 -0.83
IBM 5.79 0.08 0.32 -0.28 0.32 0.33 0.10 0.06 -0.80
INTC 6.29 0.14 0.13 -0.35 0.74 0.38 0.34 -0.06 -0.63
JNJ 5.76 0.13 0.40 -0.25 0.23 1.12 0.08 0.05 -0.74
JPM 5.76 0.17 0.44 -0.26 0.33 0.48 0.67 -0.07 -0.56
KO 5.97 0.25 0.33 -0.18 0.55 -0.05 0.62 0.01 -0.43
MCD 5.16 0.08 0.34 -0.27 0.31 1.69 0.02 0.06 -0.88
MMM 5.55 0.05 0.29 -0.27 0.25 0.93 0.06 0.06 -0.87
MRK 5.89 0.20 0.40 -0.23 0.45 0.20 0.71 -0.09 -0.53
MSFT 6.37 0.11 0.27 -0.38 0.72 0.17 0.39 -0.05 -0.72
NKE 6.01 0.10 0.35 -0.25 0.29 0.45 0.05 0.08 -0.70
PFE 5.19 0.38 0.28 -0.15 0.70 0.36 0.34 0.03 -0.33
PG 5.84 0.11 0.40 -0.23 0.41 -0.13 1.35 -0.25 -0.53
RTX 6.12 0.15 0.34 -0.24 0.32 -0.50 0.02 0.10 -0.65
TRV 5.07 0.05 0.30 -0.30 0.96 -0.66 0.57 -0.14 -0.02
UNH 4.58 0.07 0.28 -0.27 0.39 0.08 0.11 0.03 -0.73
V 5.91 0.06 0.32 -0.27 0.32 0.65 0.09 0.06 -0.91
VZ 5.79 0.27 0.38 -0.19 0.44 2.53 0.71 -0.05 -0.53
WBA 5.82 0.12 0.18 -0.34 0.68 0.38 0.26 -0.00 -0.62
WMT 6.19 0.12 0.38 -0.24 0.34 -2.33 0.15 0.08 -0.71
XOM 6.11 0.24 0.31 -0.18 0.57 -0.51 0.98 -0.06 -0.52
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Table 4: The average values of the time-varying parameters of the proposed dynamic price clustering
model, where µt is the location parameter for the price process and h1, h5 and h10 are parameters
capturing representation of 1, 5, and 10 trader types. Values of µ̄ are in dollars and values of φ̄1, φ̄5,
and φ̄10 are in percent.

Stock µ̄ ᾱ φ̄1 φ̄5 φ̄10

AAPL 291.80 8.43 92.37 0.72 6.91
AXP 98.43 7.01 95.05 1.81 3.15
BA 175.80 6.85 85.84 3.63 10.54
CAT 117.91 6.99 95.40 1.85 2.75
CSCO 42.22 10.26 98.07 0.54 1.38
CVX 88.26 7.62 96.26 1.32 2.42
DIS 112.50 7.90 94.18 2.25 3.56
DOW 36.46 7.69 97.36 1.36 1.29
GS 193.14 6.40 95.49 1.06 3.45
HD 215.44 6.63 95.72 1.44 2.84
IBM 124.05 7.38 96.01 1.64 2.34
INTC 57.72 9.82 97.83 0.65 1.52
JNJ 140.37 7.63 96.78 1.36 1.85
JPM 103.65 8.03 95.47 2.54 1.98
KO 48.33 8.88 98.29 0.67 1.04
MCD 183.86 6.74 96.12 0.72 3.16
MMM 149.92 7.02 95.87 1.17 2.96
MRK 79.28 8.43 97.69 1.23 1.08
MSFT 169.29 9.11 94.57 0.84 4.59
NKE 88.58 7.67 96.89 1.60 1.51
PFE 34.46 9.30 98.07 1.01 0.91
PG 116.41 7.61 96.82 1.87 1.31
RTX 62.28 8.13 95.83 2.06 2.11
TRV 111.57 6.59 99.18 0.34 0.48
UNH 271.73 6.29 96.01 1.08 2.91
V 180.13 7.34 95.59 1.03 3.37
VZ 55.60 8.85 97.90 1.13 0.97
WBA 45.73 8.91 97.49 0.72 1.79
WMT 118.65 7.98 96.57 1.56 1.87
XOM 45.82 8.86 97.02 1.54 1.44
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Table 5: The average log-likelihood and AIC of the GARCH model based on prices, price differences,
and logarithmic returns.

GARCH Prices GARCH Diff. GARCH Returns
Stock Lik. AIC Lik. AIC Lik. AIC

AAPL -2.5746 13 208 099 -5.2727 27 049 463 -4.3884 22 512 972
AXP -2.4059 2 188 119 -2.3377 2 126 170 -2.3763 2 161 238
BA -2.7394 10 264 832 -2.6292 9 851 685 -2.6574 9 957 573
CAT -2.5208 2 018 017 -2.4113 1 930 365 -2.4510 1 962 110
CSCO -1.5249 5 002 357 -2.0551 6 741 593 -2.1396 7 018 554
CVX -2.0584 3 917 643 -2.0497 3 901 118 -2.0949 3 987 076
DIS -2.0628 5 421 767 -2.0354 5 349 755 -2.0673 5 433 680
DOW -1.6886 2 003 496 -4.5152 5 357 203 -2.3970 2 844 000
GS -3.0694 2 229 509 -2.9351 2 131 952 -2.9922 2 173 438
HD -2.9571 2 901 792 -2.8380 2 784 909 -2.8896 2 835 555
IBM -2.3741 2 613 784 -2.2938 2 525 361 -2.3335 2 569 071
INTC -1.9481 7 292 699 -2.6590 9 953 934 -2.6006 9 735 148
JNJ -2.2352 3 728 754 -2.1734 3 625 695 -2.2070 3 681 711
JPM -1.9525 5 605 765 -1.9862 5 702 612 -1.9881 5 707 947
KO -1.9314 4 354 157 -3.8296 8 633 353 -3.9745 8 959 837
MCD -2.8049 2 640 119 -2.6921 2 534 034 -2.7435 2 582 349
MMM -2.6323 2 278 283 -2.5214 2 182 343 -2.5606 2 216 259
MRK -1.7283 3 820 785 -4.2919 9 488 111 -2.4060 5 318 993
MSFT -2.5715 15 233 489 -4.0619 24 062 626 -3.6716 21 750 487
NKE -2.0372 2 749 121 -2.0211 2 727 453 -2.0467 2 761 959
PFE -2.1853 6 235 010 -3.4096 9 728 002 -4.0341 11 509 851
PG -2.1326 3 592 595 -2.0727 3 491 644 -2.1039 3 544 311
RTX -1.7441 1 617 736 -2.7315 2 533 649 -2.0640 1 914 459
TRV -2.6650 1 085 969 -2.5548 1 041 069 -2.6048 1 061 427
UNH -3.2196 3 531 152 -3.0794 3 377 429 -3.1228 3 425 016
V -2.5259 4 813 622 -2.4277 4 626 415 -2.4777 4 721 700
VZ -1.9834 4 558 623 -3.8440 8 834 862 -6.5427 15 037 233
WBA -2.3269 2 971 343 -3.0885 3 943 860 -3.2108 4 100 059
WMT -2.0344 3 553 640 -2.0067 3 505 265 -2.0152 3 520 046
XOM -1.9437 7 947 244 -4.0050 16 375 114 -4.0749 16 661 060
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Figure 4: The time-varying portions of trader types obtained from the proposed price clustering
model for the BA stock on January 2, 2020.

hypotheses is out of the scope of our paper. In this section, we focus only on the most studied
hypothesis in the literature – the price resolution hypothesis.

The price resolution hypothesis of Ball et al. (1985) considers the source of price clustering to be
the uncertainty. It states that when the amount of information in the market is low and the volatility
becomes higher, the market participants incline to round their prices, and consequently, the price
clustering increases. This hypothesis was confirmed by many studies. The studies found that price
clustering increases with volatility using different data and measures. For example, Ahn et al. (2005)
computed the volatility as the inverse of the daily return standard deviation, while Ikenberry and
Weston (2008) used the standard deviation of returns over the sample period, Box and Griffith (2016)
used the standard deviation of 15-minute continuously compounded midpoint returns over the trading
day, Schwartz et al. (2004) used the difference in the high and low prices for the day, and Lien et al.
(2019) utilized the transitory volatility defined as the coefficient of variation of intraday trade prices.
Davis et al. (2014) found that price clustering is positively related to volatility, however, only when
a non–high-frequency trading firm provides liquidity. On the contrary to the vast majority of the
literature, Blau (2019) reported based on panel regressions that the volatility is negatively related
to price clustering, where the volatility is measured as the standard deviation of residual returns
obtained from estimating a Fama and French 3-factor model.

Our results from the daily analysis show that the realized volatility is highly significant and
positively related to the price clustering. This finding is in line with the price resolution hypothesis.
Interestingly, instantaneous volatility obtained from the proposed dynamic price model has a negative
effect on price clustering. The results do not contradict since they explore price clustering from
different perspectives. The result based on daily data holds for low-frequency traders whose price
resolution is influenced by the uncertainty in a negative way, i.e. the higher daily volatility, the higher
price clustering. On the other hand, the presence of high-frequency traders is typically associated
with increased volatility (see, e.g., Roşu, 2019; Shkilko and Sokolov, 2020; Boehmer et al., 2021).
Moreover, high-frequency traders generally do not incline to price rounding (see Davis et al., 2014).
Consequently, the higher the instantaneous volatility is, the higher portion of high-frequency traders
is, which lowers the price clustering.
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5 Conclusion

We have proposed a dynamic price model to capture agents trading in different multiples of the tick
size. In the literature, this empirical phenomenon known as price clustering was mostly approached
only by basic descriptive statistics rather than a proper price model. By analyzing 30 DJIA stocks
from both daily and high-frequency perspectives, we have revealed dissension between the two time
scales. While daily realized volatility has a positive effect on price clustering, instantaneous volatility
obtained by the proposed model has a negative effect. We argue that volatility on lower frequency
affects low-frequency traders through the resolution hypothesis while volatility on higher frequency
affects only high-frequency traders who do not tend to price clustering.

Our price model brings several advantages over existing approaches to price clustering since it
operates at the highest possible frequency. Consequently, (i) it allows practitioners and academics to
study price clustering from a new perspective, and (ii) it can be seen as an extension or a new compo-
nent for high-frequency price modeling. For example, our price model can be used for simulations of
intra-day price processes, which typically serve for optimization of trading strategies, assessment and
calibration of models, asset pricing, a decision-making process of investments and hedging strategies,
pricing derivatives and other financial instruments. We show that price clustering is not negligible
since the excess relative frequency of multiples of five and ten cents can make up to 11.52 percent
in our dataset. Consequently, neglecting the price clustering phenomenon in the simulations of the
price process can have serious consequences for the subsequent usage resulting in unexpected losses
caused by, e.g., biased estimates for prices of derivatives, a sub-optimal choice of trading or hedging
strategies and models. Our high-frequency price model can also help academics and practitioners to
investigate and understand the price clustering phenomenon as such. Finally, high-frequency traders
and market makers can directly incorporate our approach into their price models to take into account
this phenomenon.

We believe the model to be sufficient for its purpose – capturing price clustering and allowing to
explain it. For the model to be able to compete with other high-frequency price models, however,
it would have to be improved. The main limitation lies in the underlying distribution. We have to
study how well the double Poisson distribution, which we have used, captures the observed prices
in more detail. However, due to our specific problem, we require the distribution to be defined on
positive integers and allow for underdispersion. The range of possible alternatives is therefore severely
limited as it is not a typical situation in count data analysis. Furthermore, the specification of the
dynamics could be enhanced. We could include a separate model for durations and we could add
a seasonality component to the volatility. One possible direction for the future research is therefore
to comprehensively assess the suitability of the double Poisson distribution for prices, extend the
specification of the proposed dynamic model, and compare it with various models for price differences.

Concerning the empirical study, our focus has been on the price variance, whether it is daily
realized volatility or instantaneous variance. Nevertheless, we have also included the expected price,
the preceding trade duration, and the volume as control variables. These are the most common
variables in the price clustering literature. However, other factors such as the spread and the investor
sentiment could also be considered. In the context of the proposed high-frequency price model, any
variable could be straightforwardly included in the price clustering dynamics. Price clustering at
levels other than 5 and 10 cents can be added to the model as well. Analyzing the effects of these
factors and price clustering levels is the second possible direction of the future research.
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A Derivation of Distribution for Specific Trader Types

Let there be m types of traders that can trade only in k1, . . . , km multiples of the tick size respectively.
For trader type k ∈ {k1, . . . , km}, we derive the distribution of prices P

[
Y [k] = y

∣∣µ, α
]
. We require

the distribution to be based on the double Poisson distribution, to have the support consisting of
multiples of k, to have the expected value E

[
Y [k]

]
≃ µ and to have the variance var

[
Y [k]

]
≃ µe−α.

We can modify any integer distribution P
[
Z [k] = y

∣∣µ, α
]

to have support consisting only of multiples
of k as

P
[
Y [k] = y

∣∣∣µ, α
]
= I {k | y}P

[
Z [k] =

y

k

∣∣∣µ, α
]
, (18)

where I {k | y} is equal to 1 if y is divisible by k and 0 otherwise. We assume that Z [k] follows the
double Poisson distribution with parameters µ[k] and α[k], i.e. Z [k] ∼ DP

(
µ[k], α[k]

)
. The expected

value of Y [k] is

E
[
Y [k]

]
=

∞∑

y=0

yP
[
Y [k] = y

∣∣∣µ, α
]

=

∞∑

y=0

yI {k | y}P
[
Z [k] =

y

k

∣∣∣µ, α
]

=
∞∑

y=0

kyP
[
Z [k] = y

∣∣∣µ, α
]

= kE
[
Z [k]

]

≃ kµ[k].

(19)

The variance of Y [k] is

var
[
Y [k]

]
=

∞∑

y=0

(
y − E

[
Y [k]

])2
P
[
Y [k] = y

∣∣∣µ, α
]

=
∞∑

y=0

(
y − E

[
Y [k]

])2
I {k | y}P

[
Z [k] =

y

k

∣∣∣µ, α
]

=
∞∑

y=0

(
ky − kE

[
Z [k]

])2
P
[
Z [k] = y

∣∣∣µ, α
]

= k2var
[
Z [k]

]

≃ k2µ[k]e−α
[k]
.

(20)

Our last requirements E
[
Y [k]

]
≃ µ with var

[
Y [k]

]
≃ µe−α lead to the system of equations

µ = kµ[k]

µe−α = k2µ[k]e−α
[k]

(21)
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with the solution
µ[k] =

µ

k
, α[k] = α+ ln (k) . (22)

Everything together gives us the distribution

P
[
Y [k] = y

∣∣∣µ, α
]
= I {k | y}P

[
Z [k] =

y

k

∣∣∣µ, α
]
, Z [k] ∼ DP

(µ
k
, α+ ln(k)

)
. (23)

Note that the mixture distribution of all prices

P [Y = y|µ, α, φk1 , . . . , φkm ] =
∑

k∈{k1,...,km}
φkP

[
Y [k] = y

∣∣∣µ, α
]

(24)

has approximately the same expected value and variance as the distribution of Y [k]. This is based on
the identity

E [g(Y )] =

∞∑

y=0

g(y)P [Y = y|µ, α, φk1 , . . . , φkm ]

=
∞∑

y=0

g(y)
∑

k∈{k1,...,km}
φkP

[
Y [k] = y

∣∣∣µ, α
]

=
∑

k∈{k1,...,km}
φk

∞∑

y=0

g(y)P
[
Y [k] = y

∣∣∣µ, α
]

=
∑

k∈{k1,...,km}
φkE

[
g
(
Y [k]

)]

= E
[
g
(
Y [k]

)]
,

(25)

where g(·) is any function satisfying that E
[
g
(
Y [k]

)]
are the same for all k.

B Descriptive Statistics of Cleaned Data

Descriptive statistics are given in Table 6.
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Table 6: The table reports a number of observations (#Trades), sample mean (Mean P) and standard
deviation (SD P) of prices, sample mean (Mean D) and standard deviation (SD D) of durations, and
price clustering (PC) calculated as the excess relative frequency of multiples of five cents and ten
cents in prices.

Stock #Trades Mean P SD P Mean D SD D PC [%]

AAPL 2 671 590 291.71 34.67 1.10 2.71 8.28
AXP 467 623 98.59 17.84 6.24 13.30 4.02
BA 1 886 402 176.06 60.40 1.55 5.01 11.52
CAT 413 148 118.07 14.32 7.08 15.25 3.79
CSCO 1 712 341 42.26 4.14 1.71 5.54 2.08
CVX 964 508 88.34 15.87 3.03 6.42 3.03
DIS 1 327 041 112.56 16.38 2.20 4.67 4.80
DOW 606 116 36.53 8.33 4.82 10.44 2.24
GS 376 058 193.37 31.28 7.78 16.89 3.53
HD 503 522 215.65 28.69 5.80 12.12 3.57
IBM 563 345 124.12 15.30 5.19 10.60 3.34
INTC 2 065 813 57.84 5.53 1.42 4.22 2.13
JNJ 846 988 140.42 9.87 3.45 7.14 2.68
JPM 1 448 425 103.69 17.38 2.02 4.30 3.71
KO 1 140 050 48.35 5.78 2.56 6.63 1.45
MCD 483 508 184.02 20.76 6.05 12.52 3.16
MMM 445 633 150.04 14.01 6.56 13.99 3.51
MRK 1 118 215 79.30 5.40 2.61 5.55 1.94
MSFT 3 099 279 169.25 16.27 0.94 2.40 5.96
NKE 687 619 88.66 11.31 4.25 8.78 2.50
PFE 1 439 433 34.48 3.06 2.03 5.73 1.56
PG 855 186 116.44 6.85 3.41 7.14 2.79
RTX 470 061 62.28 4.87 3.04 5.49 3.37
TRV 216 618 111.75 17.08 13.49 29.25 1.84
UNH 561 256 271.93 26.72 5.21 12.16 3.39
V 965 718 180.20 18.36 3.03 6.07 3.68
VZ 1 162 040 55.61 2.60 2.52 6.15 1.62
WBA 668 123 45.78 4.87 4.38 10.54 2.22
WMT 886 255 118.66 6.14 3.30 6.82 2.85
XOM 2 057 230 45.84 9.29 1.42 3.43 2.25
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Abstract: We develop a novel observation-driven model for high-frequency prices. We account
for irregularly spaced observations, simultaneous transactions, discreteness of prices, and market
microstructure noise. The relation between trade durations and price volatility, as well as intraday
patterns of trade durations and price volatility, is captured using smoothing splines. The dynamic
model is based on the zero-inflated Skellam distribution with time-varying volatility in a score-driven
framework. Market microstructure noise is filtered by including a moving average component. The
model is estimated by the maximum likelihood method. In an empirical study of the IBM stock, we
demonstrate that the model provides a good fit to the data. Besides modeling intraday volatility, it
can also be used to measure daily realized volatility.
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1 Introduction

Modeling intraday volatility presents several challenges in contrast to modeling volatility at the daily
level as high-frequency data have distinct characteristics. A widely used tool for modeling daily
volatility is the class of generalized autoregressive conditional heteroskedasticity (GARCH) models
with seminal contributions by Engle (1982), Bollerslev (1986, 1987), and Nelson (1991). A variety
of intraday GARCH models extending daily models therefore emerged, following the call for research
in this direction by Engle (2002). In this paper, we focus on the following four characteristics of
high-frequency prices in the context of intraday GARCH models:

Irregularly spaced observations. Engle (2000) coined the term ultra-high-frequency (UHF)
data, which refer to records of every transaction made resulting in irregularly spaced observations.
Such data require special treatment in econometric modeling. Engle and Russell (1998) proposed to
model times between successive transactions, also known as trade durations, by the autoregressive
conditional duration (ACD) model. Furthermore, Engle (2000) proposed to model the variance per
time unit using irregularly spaced observations by the UHF-GARCH model. Ghysels and Jasiak
(1998) proposed an alternative GARCH model for UHF data in which the total variance is modeled
but the GARCH parameters are functions of the expected duration. Meddahi et al. (2006) highlighted
the differences between these two models. The UHF-GARCH model of Engle (2000) was further
applied e.g. by Racicot et al. (2008) and Huptas (2016).

Simultaneous transactions. A particular issue of UHF data is the occurence of transactions
with the same timestamp resulting in zero durations. Engle and Russell (1998) considered these
transactions to be split transactions which belong to a single trade and decided to aggregate them.
Note that zero duration does not necessarily mean zero return as transactions can be executed at
the same time at different prices. Blasques et al. (2022a) further studied the issue of zero durations
and pointed out that, depending on the precision of timestamps in data, zero durations may account
for the majority of observations and aggregation is not a suitable solution. When measuring price
variance per time unit, as Engle (2000) did, returns are divided by the square root of the corresponding
trade duration. Zero durations with nonzero returns of course disrupt this concept of variance per
time unit.
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Discretness of prices. Financial assets are traded on a discrete grid of prices. On the NYSE
and NASDAQ exchanges, e.g., stocks are traded with precision to one cent. This discreteness has
a large impact on the distribution of returns (see, e.g., Münnix et al., 2010 for empirical evidence).
Consequently, a strand of literature emerged that focuses on dynamic volatility models for discrete
price changes based on the Skellam distribution and its generalizations. Koopman et al. (2017) mod-
ified the Skellam distribution by transferring probability mass between 0, 1, and -1 values and used
it in a dynamic state space model for price changes. Koopman et al. (2018) took a multidimensional
approach and modeled price changes by a score-driven model based on a discrete copula with Skellam
margins. Alomani et al. (2018) used the Skellam GARCH model for drug crimes. Gonçalves and
Mendes-Lopes (2020) studied more general integer GARCH processes with applications to polio cases
and Olympic medals won. Cui et al. (2021) used a GARCH model based on the Skellam distribution
with modified probabilities for daily price changes. Doukhan et al. (2021) studied theoretical proper-
ties of integer GARCH processes. Catania et al. (2022) used the zero-inflated Skellam distribution in
a hidden Markov model for multivariate price changes. Note that none of these studies utilize UHF
data and are limited only to a fixed frequency – e.g., 1 second in Koopman et al. (2017), 10 second
in Koopman et al. (2018), and 15 second in Catania et al. (2022). In contrast to time series models,
Skellam models in continuous time were analyzed by Barndorff-Nielsen et al. (2012) and Shephard
and Yang (2017). An alternative approach was adopted by Holý and Tomanová (2022) who modeled
prices directly, instead of price changes or logarithmic returns, by the double Poisson distribution.

Market microstructure noise. A well documented feature of high frequency data is market
microstructure noise – a deviation from the fundamental efficient price (see, e.g., Hansen and Lunde,
2006 for an in-depth study). It is caused by price discreteness but also by bid-ask bounce, asymmetric
information of traders, and other informational effects. It plays a key role in nonparametric estimation
of quadratic variation and integrated variance as it significantly biases realized variance at higher fre-
quencies (see, e.g., Holý and Tomanová, 2023 for an overview of noise-robust estimators). Regarding
parametric processes, independent market microstructure noise induces a moving average component
of order one. Specifically, Aït-Sahalia et al. (2005) showed that Wiener process contaminated by
independent market microstructure noise sampled at discrete times corresponds to ARIMA(0,1,1)
process and Holý and Tomanová (2019) showed that discretized noisy Ornstein–Uhlenbeck process
corresponds to ARIMA(1,0,1) process.

Table 1 lists notable high-frequency models and summarizes their features. Note that none of these
models address all four of the above high-frequency characteristics. The goal of this paper is therefore
to combine the UHF-GARCH approach with the Skellam-GARCH approach while accounting for
simultaneous transactions and market microstructure noise.

Our approach starts with nonparametric estimation of diurnal trends in trade durations and
squared price changes using smoothing splines. When both these time series are adjusted for diurnal
trends, their relation is estimated using smoothing splines. Next, we build our dynamic model. The
original (unadjusted) price changes are assumed to follow the zero-inflated Skellam distribution of
Skellam (1946) with time-varying mean and variance and static probability of zero-inflation. The
dynamic mean follows MA(1) process to capture the effects of market microstructure noise. As high-
frequency data exhibit zero expected returns, we set the intercept to zero. In the Skellam distribution,
the variance is required to be higher than the absolute value of the mean, which is suitable for high-
frequency data. However, to avoid inconvenient restrictions on the parameter space, we propose to
parametrize the distribution in terms of the overdispersion parameter, i.e. the excessive variance. The
dynamic overdispersion then follows score-driven model, developed by Creal et al. (2013) and Harvey
(2013). The estimated diurnal pattern of squared price changes and their relation to trade durations
are further plugged into this dynamics. The used relation to trade durations simultaneously captures
adjustment of variance to time unit and the residual dependency on trade durations, which were
modeled separately by Engle (2000). The proposed joint modeling removes the problems with zero
trade durations, which can be quite frequent in high-frequency data. The proposed model belongs
to the class of observation-driven models and can be estimated by the maximum likelihood method,
which makes it suitable even for large datasets.

In an empirical study, we focus on the IBM stock (just as, e.g., Engle and Russell, 1998; Engle,
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Table 1: An overview of selected high-frequency time series models and their features – using ultra-
high-frequency data with irregularly spaced observations (Irreg), accounting for simultaneous trans-
actions with zero trade durations (Simul), accounting for discrete prices or price changes (Discrete),
accounting for market microstructure noise (Noise), joint modeling of volatility and trade dura-
tions (Duration), joint modeling of volatility and trade volume (Volume), and multivariate modeling
(Multi).

Paper Irreg Simul Discrete Noise Duration Volume Multi

Ghysels and Jasiak (1998) ✓ ✗ ✗ ✗ ✓ ✗ ✗

Engle (2000) ✓ ✗ ✗ ✗ ✓ ✗ ✗

Grammig and Wellner (2002) ✓ ✗ ✗ ✗ ✓ ✗ ✗

Manganelli (2005) ✓ ✗ ✗ ✗ ✓ ✓ ✗

Russell and Engle (2005) ✓ ✗ ✓ ✗ ✓ ✗ ✗

Liu and Maheu (2012) ✓ ✗ ✗ ✓ ✓ ✗ ✗

Huptas (2016) ✓ ✗ ✗ ✗ ✓ ✗ ✗

Koopman et al. (2017) ✗ ✗ ✓ ✗ ✗ ✗ ✗

Koopman et al. (2018) ✗ ✗ ✓ ✗ ✗ ✗ ✓

Buccheri et al. (2021) ✗ ✗ ✗ ✓ ✗ ✗ ✓

Catania et al. (2022) ✗ ✗ ✓ ✗ ✗ ✗ ✓

Holý and Tomanová (2022) ✓ ✗ ✓ ✗ ✗ ✗ ✗

This study ✓ ✓ ✓ ✓ ✗ ✗ ✗

2000) from March to July, 2022. However, we also report results for 6 other stocks traded on the
NYSE and NASDAQ exchanges. We estimate intraday models with various specifications for each of
the 105 trading days in our dataset. For the IBM stock, the average number of observations in a day
is 63 673. We show that the proposed model is a good fit and all its components are justifiable. We
also demonstrate how the results can be used as an alternative to daily realized measures of volatility
such as the realized kernel of Barndorff-Nielsen et al. (2008). Finally, we find that the relation
between price volatility and trade durations is the same as described by Engle (2000), eventhough
the magnitude of high-frequency data has increased considerabely since then.

2 Methodology

2.1 Nonparametric Temporal Adjustment

Let ti, i = 0, . . . , n, denote times of transactions and pi, i = 0, . . . , n, prices (with precision to
two decimal places). Furthermore, let di = ti − ti−1, i = 1, . . . , n, denote trade durations and
yi = 100(pi − pi−1), i = 1, . . . , n, (integer) price changes.

First, we estimate the intraday pattern of trade durations. On each day, we standardize trade
durations as d̄i = di/

1
n

∑n
i=1 di. Using the complete dataset, we then estimate the (possibly nonlinear)

dependence of d̄i on ti by the cubic smoothing spline method (see, e.g., Hastie et al., 2008, Section
5.4). The chosen nonparametric method, however, is not essential to our model and alternatives can
be used as well. We obtain the fitted function f̂dur(ti) and adjust trade durations as d̃i = d̄i/f̂dur(ti).

Next, we estimate the intraday pattern of squared price changes. To be precise, squared price
changes with substracted price changes in absolute value, zi = y2i − |yi| = yi(yi − sgn(yi)). This
transformation corresponds to the overdispersion parameter, which plays a central role in our dynamic
model. As in the case of trade durations, we standardize modified squared price changes as z̄i =
zi/

1
n

∑n
i=1 zi and then estimate the dependence of z̄i on ti by the cubic smoothing spline method. We

obtain the fitted function f̂disp(ti) and adjust modified squared returns as z̃i = zi/f̂disp(ti).
Finally, we estimate the relation between modified squared price changes and trade durations,

i.e. dependence of z̃i on d̃i. Again, we use the cubic smoothing spline method and obtain the fitted
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function f̂rel(d̃i).

2.2 Zero-Inflated Skellam Distribution

The probability theory and statistics literature does not offer many distributions defined on integer
support (without the nonnegativity or positivity constraint). The most used representative is the
Skellam distribution of Skellam (1946), which is the distribution of the difference between two in-
dependent variables following the Poisson distribution with rates λ1 and λ2 respectively. Regarding
dynamic models, it can be used when a time series of counts is nonstationary, but its first difference
is stationary – a typical feature of high-frequency prices.

The Skellam distribution is often parametrized in terms of mean µ = λ1 − λ2 and variance
σ2 = λ1+λ2 rather than rates λ1 and λ2 (see, e.g., Koopman et al., 2017, 2018; Alomani et al., 2018).
However, in this parametrization, it is required that σ2 > |µ|. When µ is nonzero, this condition can
be hard to satisfy in dynamic models. For this reason, we propose an alternative parametrization
with overdispersion parameter δ = σ2 − |µ| = min{2λ1, 2λ2} > 0 representing excessive variance.

In any case, only two parameters of the distribution do not offer much flexibility needed for high
frequency prices. Koopman et al. (2017) deflate the probability of 0 and inflate probability of 1
and -1 using an additional parameter. On the other hand, Karlis and Ntzoufras (2006, 2009) and
Catania et al. (2022) inflate the probability of 0 and deflate the probabilities of all other values using
an additional parameter, in the fashion of the zero-inflated model of Lambert (1992). As our data
exhibit increased occurence of zero values (in comparison to the fitted Skellam distribution), we follow
the latter approach and introduce the zero-inflation parameter π to the distribution.

The probability mass function of the zero-inflated Skellam distribution with the mean-
overdispersion parametrization is given by

P[Y = y | µ, δ, π] =




π + (1− π) exp(−|µ| − δ)I0

(√
δ2 + 2|µ|δ

)
for y = 0,

(1− π) exp(−|µ| − δ)
(
|µ|+µ+δ
|µ|−µ+δ

) y
2
Iy

(√
δ2 + 2|µ|δ

)
for y ̸= 0,

(1)

where I·(·) is the modified Bessel function of the first kind. The first two moments are given by

E[Y ] = (1− π)µ, var[Y ] = (1− π)
(
|µ|+ δ + πµ2

)
. (2)

2.3 Time-Varying Parameters

In the dynamic model, we let the mean parameter µ and the overdispersion parameter δ be time-
varying but keep the zero-inflation parameter π static.

Strong negative first order autocorrelation, insignificant autocorrelation of higher order, and de-
caying negative partial autocorrealtion is typical for ultra-high-frequency price changes or returns and
is caused by market microstrucure noise (see, e.g., Aït-Sahalia et al., 2005; Hansen and Lunde, 2006).
It can be effectively captured by MA(1) process. Another typical feature of high-frequency data is
zero mean of price changes or returns in long term (see, e.g., Koopman et al., 2017). We therefore
model dynamics of the mean parameter as MA(1) process with zero intercept,

µi = θ (yi−1 − µi−1) , (3)

where θ is the moving average parameter.
For the dynamics of the overdispersion parameter, we adopt a GARCH-like structure and include

the temporal adjustments presented in Section 2.1. To avoid any restrictions on the parameter space,
we model the logarithm of the overdispersion parameter, which is in line with the multiplicative
form of the temporal adjustments. Similarly to Koopman et al. (2018), we let the overdispersion
parameter be driven by lagged conditional score, i.e. the gradient of the log-likelihood, of the Skellam
distribution. Our model therefore belongs to the class of score-driven models (see Creal et al., 2013;
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Harvey, 2013)1. All put together, the dynamics of the overdispersion parameter is given by

ln (δi) = ω + ln
(
f̂disp(ti)

)
+ ln

(
f̂rel(d̃i)

)
+ εi, εi = φεi−1 + α∇ln(δ) (yi−1;µi−1, δi−1, π) , (4)

where ω is the intercept, φ is the autoregressive parameter, α is the score parameter, and ∇ln(δ)(·) is
the score given by

∇ln(δ)(y;µ, δ, π) =
∂ ln P[Y = y | µ, δ, π]

∂ ln(δ)

=





δ(π−1)
(√

δ2+2|µ|δI0
(√

δ2+2|µ|δ
)
−(|µ|+δ)I1

(√
δ2+2|µ|δ

))

√
δ2+2|µ|δ

(
(1−π)I0

(√
δ2+2|µ|δ

)
+π exp(|µ|+δ)

) for y = 0,

δ2+|µ|δ
2
√
δ2+2|µ|δ

Iy−1

(√
δ2+2|µ|δ

)
+Iy+1

(√
δ2+2|µ|δ

)

Iy
(√

δ2+2|µ|δ
) − µy

δ+2|µ| − δ for y ̸= 0.

(5)

Although the formula for the score is quite complex in the case of the Skellam distribution, its
interpretation is clear – it is a correction term improving the fit of the distribution after an observation
is realized. The use of the conditional score in dynamic models is optimal in the sense of the Kullback–
Leibler divergence between the true and the model-implied distribution (see Blasques et al., 2015,
2021).

2.4 Maximum Likelihood Estimation

There are five parameters in the model to be estimated – θ, ω, φ, α, and π. The model is observation-
driven and we find the parameters by maximizing the log-likelihood,

ℓ (θ, ω, φ, α, π | y1, . . . , yn) =
1

n

n∑

i=1

ln P[Yi = yi | µi, δi, π], (6)

where µi and δi are given by (3) and (4) respectively. As µi and εi are defined recursively, it is needed
to set their initial values. We set them to their long-term average, i.e. µ0 = ε0 = 0. The particular
choice for the initialization is not, however, that important as their impact quickly fades out and is
overall negligible in the tens of thousands or even hundreds of thousands of observations we have.
We numerically find the optimal values of the parameters using the Nelder–Mead algorithm. It is,
however, possible to use any general-purpose algorithm solving nonlinear optimization problems.

Deriving asymptotic properties of the maximum likelihood estimates is beyond the scope of the
paper. We refer to Alzaid and Omair (2010) for the theoretical results on static case of the Skellam
distribution and Blasques et al. (2018, 2022b) for the results on score-driven models in general.
Tailoring these results to our specific model is, however, not straightforward.

3 Empirical Study

3.1 Analyzed Data Sample

As Engle and Russell (1998), Engle (2000), and many other papers, we focus our analysis on the
IBM stock traded on the New York Stock Exchange (NYSE). The stock is included in the Dow Jones
Industrial Average (DJIA), S&P 100, and S&P 500 indices. We use tick-by-tick transaction data
from March to July, 2022 – a total of 105 trading days. The source of the data is Refinitiv Eikon2.
Furthermore, we report results for the CAT, MA, and, MCD stocks traded on NYSE and the CSCO,
EA, and INTC stocks traded on NASDAQ in Appendix A.

We preform standard data cleaning steps, as described e.g. in Barndorff-Nielsen et al. (2009).
Namely, we remove observations outside the standard trading hours 9:30–16:00 EST, remove ob-
servations in the first 5 minutes after the opening (we further discuss this in Section 3.3), remove

1Besides Koopman et al. (2018), score-driven model based on the Skellam distribution was also used by Koopman
and Lit (2019) in an application to football results.

2Formerly operated by Thomson Reuters.
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Figure 1: The empirical distribution function of trade durations (left) and average trade durations in
5 minute and 30 second intraday intervals with a smoothed curve (right) for the IBM stock.

observations without recorded price, remove outliers (when price exceeds 10 mean absolute deviations
from a rolling centred median of 50 observations), and round prices to the nearest cent.

After data cleaning, we get the total of 6 685 657 transactions over 105 trading days for the IBM
stock, which corresponds to 2.721 transactions per second. The two busiest days are July 19 with
258 217 transactions and April 20 with 184 250 transactions. Both these days follow announcements
of quarterly results on July 18 and April 19 respectively. The quietest day is March 28 with just
35 333 transactions. The median value is 56 894 transactions per trading day.

The subsequent analysis is performed using R. The temporal adjustment is performed by the
smooth.spline() function from the stats package (R Core Team, 2022). The dynamic model is es-
timated by the gas() function from the gasmodel package (Holý, 2022) with a one-line modification3.

3.2 Trade Durations

We start the empirical study by a brief look at trade durations. The data are recorded with a
time precision of one millisecond and we report trade durations in seconds (with precision to three
decimal places). The left plot of Figure 1 shows the empirical distribution of trade durations. Most
transactions occur in close succession – 47 percent of trade durations are equal to zero and 88 percent
are lower than one second. Thus, aggregating simultaneous transactions would almost halve the
number of observations. Using a similar dataset for the IBM stock, Blasques et al. (2022a) found
that 95 percent of zero trade durations are caused by split transactions while 5 percent are unrelated
transactions. We decide to keep simultaneous transactions in our dataset.

The right plot of Figure 1 shows diurnal pattern of trade durations – a typical hill shape. The
market is most active after opening and before closing while after noon there is a quiet period. This
is consistent with the duration literature.

3.3 Price Changes

Next, we move on to empirical properties of price changes. The left plot of Figure 2 shows the
empirical probability mass function of price changes. The price changes at ultra-high-frequency are

3The score for µ in the zero-inflated Skellam distribution is replaced by y−µ to mimic the moving average process.
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Figure 2: The empirical probability mass function of price changes (left) and average squared price
changes in 5 minute and 30 second intraday intervals with a smoothed curve (right) for the IBM
stock.

quite low – 60 percent of price changes are zero and 99 percent of price changes are between -3 and 3
cents. The most extreme price changes are -66 and 68 cents. Note, however, that some higher price
changes were labeled as outliers and removed during data cleaning.

The right plot of Figure 2 shows diurnal pattern of squared price changes. In this plot, we do not
substract the absolute value of price change – however, the plot showing the modified price change
looks almost identical. There is extreme volatility after the opening, which quickly declines. As
smoothing splines have trouble capturing this steep decrease, we remove the first 5 minutes from
data, i.e. we focus only on 9:35–16:00 EST. Right before the closing, volatility slightly increases.
There is also a slight increase around 14:00 associated with news relevant to the IBM stock4.

There is strong serial correlation present in both price changes and squared price changes. The
autocorrelation of price changes is -0.352 for the first order and very close to zero for higher orders.
The partial autocorrelation, on the other hand, decreases gradually. The autocorrelation of squared
price changes is 0.403 for the first order and gradually decreases for higher orders. The partial
autocorrelation also decreases gradually. This suggests MA(1) dynamics for the mean process and
richer dynamics for the volatility process.

Price variance (squared price changes) naturally increases with trade duration. This relation is
vizualized in the left plot of Figure 3. However, this increase is slower than linear. The right plot
of Figure 3 shows that price variance per second (squared price changes divided by trade duration)
decreases with trade duration. This is in line with Engle (2000) who estimated a positive linear
dependence of variance per time unit on the inverse of trade duration. We refrain from this approach
due to problems with zero values. We would be dividing by zero twice – when calculating squared
price changes per second and when inverting trade durations. Note that for the purposes of the right
plot of Figure 3, we add 0.001 to the values of trade durations. Of course, this is a completely arbitrary
transformation, which has a large impact on behavior near zero (which is cropped in the right plot
of Figure 3). Instead, we directly estimate relation between price variance and trade durations and
thus avoid problems with zero values.

4In the case of the IBM stock, the increase is not that major. In the case of other stocks, however, this could be
much larger jump (or multiple jumps at various times), which smoothing splines could fail to capture; see Appendix A.
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Figure 3: The average diurnally adjusted squared price changes (left) and diurnally adjusted squared
price changes per second (right) in 50 millisecond and half second intervals of diurnally adjusted trade
durations with a smoothed curve for the IBM stock.

3.4 Dynamics of Intraday Price Volatility

For each trading day, we estimate 10 specifications of the proposed dynamic model – with different
parametrizations and different parameters set to zero. The features of the models are summarized
in Table 2. In Table 3, we report the minimum, maximum, and median values of estimated param-
eters. Note that, we do not report p-values as all parameters are significant due to huge numbers of
observations (with the exception of π for a single day, as further mentioned below). In Table 4, we
assess fit of the models using the average log-likelihood and residual autocorrelation tests in the form
of R2 statistic. Note that the number of parameters (in any of our model specifications) is negligible
compared to the number of observations. For this reason, we do not report AIC or BIC.

First, let us focus on the parametrization of the model. We compare the mean-variance
parametrization (models I–V), used e.g. by Koopman et al. (2017, 2018) and Alomani et al.
(2018), with the proposed mean-overdispersion parametrization (models VI–X). When the mean
is not dynamic and is set to zero, both parametrizations are equivalent. The only difference
lies in the temporal adjustment, which is based on the squared differences for the mean-variance
parametrization and the squared differences with substracted mean in absolute value for the
mean-overdispersion parametrization. The results show that this difference is not that distinct –
model I has very similar log-likelihood to model VI and model IV to model IX. When the mean is
dynamic, however, the mean-overdispersion is superior – models VII, VIII, and X clearly outperform
their counterpart models II, III, and V in terms of log-likelihood. The problem, of course, lies in
bounds on parameter space imposed by the mean-variance parametrization.

Next, we asses the impact of the individual parameters. As discussed in Section 3.3, the autocor-
relation and partial autocorrelation functions of price changes suggest MA(1) structure for the mean
process. Indeed, restricting θ to zero causes considerable decrease in log-likelihood as evident between
models IV/V and IX/X. The autocorrelation in residuals also significantly increases. As expected,
the estimated θ is negative for all trading days. Interestingly, its value is much closer to zero in
the case of the mean-variance parametrization than the mean-overdispersion parametrization. This
suppression of θ is caused by the lower bound on the variance process. In the mean-overdispersion
parametrization, there is no such restriction and the mean process is able to reach its full potential.
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Table 2: Summary of the features of the estimated models.
Model Mean Volatility Zeros Parametrization

I Static Static Unaltered Variance
II Dynamic Dynamic Unaltered Variance
III Dynamic Static Inflated Variance
IV Static Dynamic Inflated Variance
V Dynamic Dynamic Inflated Variance
VI Static Static Unaltered Overdispersion
VII Dynamic Dynamic Unaltered Overdispersion
VIII Dynamic Static Inflated Overdispersion
IX Static Dynamic Inflated Overdispersion
X Dynamic Dynamic Inflated Overdispersion

The comparison of log-likelihood and autocorrelation in squared residuals between models III/V
and VIII/X reveals that volatility (whether paramterized in terms of variance or overdispersion)
should not be treated as constant. Similarly to θ, there is a difference in estimated values of α
and φ between the mean-variance and mean-overdispersion parametrizations. Model X has higher
persistence in comparison to model V. Again, this can be atributed to the lower bound on the variance
process in the mean-variance parametrization.

In each model allowing for zero inflation, π is positive for all days except one, July 285. This
suggests that there is an increased occurence of zero price changes in general and the underlying
distribution should accomodate this. Among the three components studied in this section – dynamic
mean, dynamic volatility, and zero inflation – setting parameter π to zero decreases the log-likelihood
the least, but still distinctly.

Overall, model X performs the best in terms of the log-likelihood among our 10 candidates. The
proposed specification for the mean and overdispersion processes also overwhelmingly reduces residual
autocorrelation in price changes and squared price changes. Due to huge number of observations,
however, it is difficult to obtain statistical significance of no autocorrelation. The associated Ljung–
Box test rejects no autocorrelation in residuals of model X for all days and lags at 0.01 significance
level. The associated ARCH-LM test suggests no autocorrelation in squared residuals of model X for
68 percent of days for lag 1 but only 4 percent for lag 100 at 0.01 significance level. Nevertheless, the
R2 static is very low in all cases and the model captures mean and volatility dynamics quite well.

3.5 Daily Measures of Price Volatility

The proposed approach can naturally be used to model intraday dynamics of prices but also to
estimate volatility at daily level as a model-based alternative to various nonparametric volatility
measures. A standard nonparametric measure of daily volatility is the realized variance – the sum of
squared returns. However, this measure is biased by market microstructure noise and generally not
recommended to use at ultra-high-frequency (see, e.g., Hansen and Lunde, 2006). At lower frequency
such as 5 minutes, however, it can be sufficient as the impact of market microstructure noise is reduced
(see, e.g., Liu et al., 2015). A widely used realized measure that is robust to market microstructure
noise is the realized kernel of Barndorff-Nielsen et al. (2008)6.

In this section, we compare the realized variance and the realized kernel based on the modified
Tukey–Hanning kernel with realized measures implied by our model. The total variance based on the
proposed model is given by

TMV =
n∑

i=1

(1− π)
(
|µi|+ δi + πµ2i

)
. (7)

5However, other stocks may exhibit different behaviors, and zero inflation may not be necessary; see Appendix A
6For details on practical use of the realized kernel, see Barndorff-Nielsen et al. (2009). For the multivariate case,

see Barndorff-Nielsen et al. (2011). Other noise-robust realized measures such as the multi-scale and pre-averaging
estimators are fairly similar as they can all be expressed in a quadratic form (see, e.g., Holý and Tomanová, 2023).
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Table 3: The minimum, median, and maximum values of estimated parameters of various daily models
for the IBM stock.

Variance Models Overdispersion Models

Coef. Trans. I II III IV V VI VII VIII IX X

Min -0.149 -0.064 -0.181 -0.449 -0.567 -0.527
θ Med -0.103 -0.028 -0.116 -0.302 -0.383 -0.343

Max -0.050 -0.006 -0.055 -0.216 -0.305 -0.261

Min -0.379 -0.384 -0.379 -0.400 -0.386 -0.212 -0.513 -0.663 -0.196 -0.513
ω Med 0.200 0.192 0.401 0.299 0.340 0.384 0.068 0.095 0.491 0.170

Max 0.676 0.712 1.056 0.860 0.958 0.892 0.613 0.885 1.066 0.800

Min 0.471 0.644 0.468 0.942 0.708 0.954
φ Med 0.761 0.834 0.787 0.982 0.872 0.981

Max 0.963 0.984 0.963 0.997 0.988 0.997

Min 0.103 0.095 0.102 0.065 0.100 0.077
α Med 0.495 0.498 0.517 0.165 0.488 0.192

Max 0.667 0.681 0.701 0.259 0.697 0.287

Min 0.000 0.000 0.000 0.000 0.000 0.000
π Med 0.154 0.119 0.118 0.132 0.111 0.119

Max 0.299 0.235 0.246 0.250 0.223 0.221

Table 4: The R2 statistics of residuals and squared residuals regressed on their lagged values with
the average log-likelihood of an observation for various daily models for the IBM stock.

Variance Models Overdispersion Models

Statistic Lag I II III IV V VI VII VIII IX X

1 0.118 0.040 0.104 0.077 0.041 0.116 0.004 0.002 0.075 0.003
AR R2 10 0.151 0.055 0.136 0.097 0.055 0.149 0.008 0.004 0.095 0.007

100 0.154 0.057 0.139 0.098 0.057 0.153 0.010 0.007 0.096 0.009

1 0.104 0.003 0.097 0.005 0.003 0.104 0.000 0.001 0.006 0.000
ARCH R2 10 0.150 0.008 0.145 0.007 0.007 0.154 0.004 0.028 0.007 0.003

100 0.181 0.021 0.176 0.016 0.018 0.189 0.007 0.049 0.015 0.006

Log-Likelihood -1.264 -1.200 -1.245 -1.212 -1.193 -1.267 -1.177 -1.187 -1.209 -1.170
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Figure 4: The daily values of various volatility realized measures for the IBM stock.

We can also measure volatility by the total overdispersion adjusted for temporal effects (both diurnal
and duration) given by

AMV =
n∑

i=1

δi

f̂disp(ti)f̂rel(d̃i)
=

n∑

i=1

exp (ω + εi) . (8)

In the latter realized measure, market microstructure noise is filtered by removing the MA(1) com-
ponent and the effect of trade durations.

Figure 4 shows daily volatility obtained by these measures. The largest variance for all measures
is on April 20 (following the announcement of the first quarter results on April 19) and on July 19
(following the announcement of the second quarter results on July 18). We can see that all measures
tend to move together but have different scale. This is also supported by a simple correlation analysis.
The highest correlations are 0.998 between the total model volatility and the realized variance and
0.965 between the adjusted model volatility and the realized kernel. Other correlations lie between
0.821 and 0.882. We can conclude that the total model volatility is similar to the realized variance
as they are both influenced by market microstructure noise. On the other hand, the adjusted model
volatility is robust to market microstructure noise, just as the realized kernel. The main benefit of the
proposed model-based approach is that we can decompose the variance into individual components
according to (2) and (4).

4 Conclusion

We have proposed a dynamic model for intraday stock prices that takes into account irregularly spaced
observations, simultaneous transactions, discreteness of prices, and market microstructure noise. In
this model, we have combined two streams of the literature dealing with UHF-GARCH and Skellam-
GARCH models respectively and further developed them. We have shown that the model finds its
use not only in analysis of intraday dynamics but also in estimation of daily volatility.

Suggestions for future research follow Table 1. Our model can be extended to include dynamics
of trade durations and possibly trade volumes. Another direction lies in multivariate modeling. This
is, however, quite challenging due to nonsynchronicity of ultra-high-frequency data.
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A Evidence from Further Stocks

In this appendix, we report the results for additional stocks: Caterpillar (CA), traded on NYSE with
an average of 2.320 transactions per second; Cisco (CSCO), traded on NASDAQ with an average of
5.738 transactions per second; Electronic Arts (EA), traded on NASDAQ with an average of 1.518
transactions per second; Intel (INTC), traded on NASDAQ with an average of 8.683 transactions per
second; Mastercard (MA), traded on NYSE with an average of 2.732 transactions per second; and
McDonald’s (MCD), traded on NYSE with an average of 2.402 transactions per second.

In general, these results closely resemble those observed for the IBM stock. Nonetheless, there
are two distinctions. First, while smoothing splines effectively capture the diurnal patterns of price
volatility in the IBM stock, they struggle to account for the impact of news events occurring at regular
times. This discrepancy is particularly pronounced when analyzing the INTC stock. Nonetheless,
this isn’t a significant limitation for our study. Second, zero-inflation is not necessary in most days
for the CSCO and INTC stocks, which are the two most frequently traded stocks in our sample.
Although zero price changes occur more frequently for these stocks compared to others, a regular
Skellam distribution suffices. In other aspects, the results reinforce the implications drawn from the
analysis of the IBM stock.
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Figure 5: The empirical distribution function of trade durations (left) and average trade durations in
5 minute and 30 second intraday intervals with a smoothed curve (right) for the CAT stock.
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Figure 6: The empirical probability mass function of price changes (left) and average squared price
changes in 5 minute and 30 second intraday intervals with a smoothed curve (right) for the CAT
stock.
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Figure 7: The average diurnally adjusted squared price changes (left) and diurnally adjusted squared
price changes per second (right) in 50 millisecond and half second intervals of diurnally adjusted trade
durations with a smoothed curve for the CAT stock.

Table 5: The minimum, median, and maximum values of estimated parameters of various daily models
for the CAT stock.

Variance Models Overdispersion Models

Coef. Trans. I II III IV V VI VII VIII IX X

Min -0.195 -0.187 -0.268 -0.372 -0.554 -0.509
θ Med -0.120 -0.059 -0.155 -0.283 -0.432 -0.387

Max -0.074 -0.013 -0.096 -0.217 -0.347 -0.289

Min 1.122 1.064 1.546 1.318 1.357 1.238 0.904 1.190 1.423 1.178
ω Med 1.724 1.633 2.147 1.915 1.982 1.834 1.497 1.829 2.023 1.774

Max 2.817 2.703 3.302 3.070 3.136 2.906 2.655 3.077 3.194 3.005

Min 0.724 0.821 0.735 0.910 0.859 0.937
φ Med 0.908 0.950 0.933 0.957 0.950 0.971

Max 0.986 0.996 0.990 0.993 0.995 0.997

Min 0.026 0.021 0.029 0.025 0.020 0.025
α Med 0.200 0.199 0.221 0.210 0.190 0.204

Max 0.434 0.421 0.463 0.287 0.416 0.297

Min 0.217 0.177 0.176 0.202 0.166 0.179
π Med 0.277 0.237 0.237 0.256 0.226 0.232

Max 0.343 0.317 0.318 0.325 0.313 0.309
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Table 6: The R2 statistics of residuals and squared residuals regressed on their lagged values with
the average log-likelihood of an observation for various daily models for the CAT stock.

Variance Models Overdispersion Models

Statistic Lag I II III IV V VI VII VIII IX X

1 0.117 0.040 0.092 0.092 0.043 0.115 0.005 0.003 0.091 0.004
AR R2 10 0.153 0.056 0.123 0.117 0.058 0.150 0.011 0.005 0.115 0.006

100 0.156 0.058 0.126 0.119 0.060 0.154 0.013 0.008 0.117 0.009

1 0.099 0.007 0.085 0.016 0.008 0.099 0.001 0.003 0.017 0.001
ARCH R2 10 0.137 0.009 0.127 0.017 0.010 0.139 0.003 0.038 0.018 0.003

100 0.173 0.017 0.162 0.022 0.016 0.177 0.008 0.065 0.023 0.006

Log-Likelihood -2.057 -1.947 -1.948 -1.908 -1.881 -2.050 -1.923 -1.889 -1.907 -1.857
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Figure 8: The daily values of various volatility realized measures for the CAT stock.
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Figure 9: The empirical distribution function of trade durations (left) and average trade durations in
5 minute and 30 second intraday intervals with a smoothed curve (right) for the CSCO stock.
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Figure 10: The empirical probability mass function of price changes (left) and average squared price
changes in 5 minute and 30 second intraday intervals with a smoothed curve (right) for the CSCO
stock.
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Figure 11: The average diurnally adjusted squared price changes (left) and diurnally adjusted squared
price changes per second (right) in 50 millisecond and half second intervals of diurnally adjusted trade
durations with a smoothed curve for the CSCO stock.

Table 7: The minimum, median, and maximum values of estimated parameters of various daily models
for the CSCO stock.

Variance Models Overdispersion Models

Coef. Trans. I II III IV V VI VII VIII IX X

Min -0.091 -0.013 -0.090 -0.571 -0.620 -0.571
θ Med -0.056 -0.007 -0.056 -0.466 -0.483 -0.469

Max -0.015 -0.002 -0.018 -0.252 -0.266 -0.252

Min -1.784 -1.876 -1.784 -1.924 -1.876 -1.729 -2.640 -2.695 -1.796 -2.640
ω Med -1.659 -1.714 -1.659 -1.736 -1.716 -1.601 -2.251 -2.316 -1.622 -2.250

Max -1.466 -1.467 -1.014 -1.451 -1.345 -1.386 -1.750 -1.856 -1.289 -1.750

Min 0.533 0.670 0.533 0.978 0.731 0.978
φ Med 0.752 0.843 0.752 0.998 0.887 0.998

Max 0.984 0.986 0.983 1.000 0.986 1.000

Min 0.100 0.113 0.100 0.014 0.111 0.014
α Med 0.789 0.746 0.788 0.079 0.720 0.079

Max 1.323 1.071 1.323 0.240 1.120 0.299

Min 0.000 0.000 0.000 0.000 0.000 0.000
π Med 0.000 0.000 0.000 0.000 0.000 0.000

Max 0.317 0.179 0.176 0.154 0.199 0.152
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Table 8: The R2 statistics of residuals and squared residuals regressed on their lagged values with
the average log-likelihood of an observation for various daily models for the CSCO stock.

Variance Models Overdispersion Models

Statistic Lag I II III IV V VI VII VIII IX X

1 0.126 0.058 0.122 0.075 0.058 0.123 0.000 0.000 0.072 0.000
AR R2 10 0.174 0.084 0.170 0.101 0.083 0.165 0.004 0.003 0.095 0.004

100 0.178 0.085 0.173 0.102 0.084 0.168 0.005 0.004 0.096 0.005

1 0.094 0.005 0.093 0.006 0.005 0.091 0.000 0.000 0.008 0.000
ARCH R2 10 0.130 0.011 0.129 0.008 0.010 0.125 0.002 0.004 0.010 0.002

100 0.158 0.020 0.157 0.015 0.019 0.148 0.006 0.018 0.014 0.006

Log-Likelihood -0.512 -0.480 -0.510 -0.488 -0.480 -0.516 -0.448 -0.451 -0.489 -0.448
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Figure 12: The daily values of various volatility realized measures for the CSCO stock.
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Figure 13: The empirical distribution function of trade durations (left) and average trade durations
in 5 minute and 30 second intraday intervals with a smoothed curve (right) for the EA stock.
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Figure 14: The empirical probability mass function of price changes (left) and average squared price
changes in 5 minute and 30 second intraday intervals with a smoothed curve (right) for the EA stock.
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Figure 15: The average diurnally adjusted squared price changes (left) and diurnally adjusted squared
price changes per second (right) in 50 millisecond and half second intervals of diurnally adjusted trade
durations with a smoothed curve for the EA stock.

Table 9: The minimum, median, and maximum values of estimated parameters of various daily models
for the EA stock.

Variance Models Overdispersion Models

Coef. Trans. I II III IV V VI VII VIII IX X

Min -0.124 -0.095 -0.202 -0.365 -0.631 -0.536
θ Med -0.073 -0.035 -0.103 -0.242 -0.416 -0.352

Max -0.020 -0.003 -0.032 -0.133 -0.242 -0.179

Min 0.262 0.115 0.633 0.468 0.476 0.361 -0.183 0.232 0.506 0.176
ω Med 0.878 0.761 1.324 1.091 1.135 0.979 0.650 1.008 1.194 0.981

Max 2.135 1.917 3.201 3.074 2.738 2.270 1.628 2.497 3.063 2.086

Min 0.683 0.629 0.671 0.847 0.545 0.897
φ Med 0.916 0.950 0.945 0.954 0.949 0.971

Max 0.994 0.999 0.998 0.997 1.000 0.999

Min 0.043 0.017 0.020 0.031 0.008 0.032
α Med 0.177 0.184 0.190 0.188 0.184 0.189

Max 0.433 0.491 0.496 0.346 0.484 0.347

Min 0.161 0.137 0.138 0.150 0.127 0.140
π Med 0.317 0.263 0.266 0.292 0.249 0.261

Max 0.468 0.445 0.416 0.435 0.390 0.387
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Table 10: The R2 statistics of residuals and squared residuals regressed on their lagged values with
the average log-likelihood of an observation for various daily models for the EA stock.

Variance Models Overdispersion Models

Statistic Lag I II III IV V VI VII VIII IX X

1 0.101 0.043 0.087 0.074 0.045 0.099 0.006 0.002 0.072 0.004
AR R2 10 0.134 0.058 0.118 0.093 0.060 0.131 0.013 0.005 0.091 0.007

100 0.141 0.061 0.125 0.096 0.063 0.139 0.017 0.010 0.094 0.011

1 0.094 0.008 0.086 0.013 0.009 0.092 0.001 0.002 0.014 0.001
ARCH R2 10 0.136 0.010 0.130 0.015 0.012 0.135 0.003 0.028 0.016 0.003

100 0.170 0.020 0.164 0.022 0.019 0.170 0.011 0.052 0.023 0.009
Log-Likelihood -1.590 -1.491 -1.514 -1.462 -1.446 -1.582 -1.467 -1.455 -1.460 -1.422
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Figure 16: The daily values of various volatility realized measures for the EA stock.
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Figure 17: The empirical distribution function of trade durations (left) and average trade durations
in 5 minute and 30 second intraday intervals with a smoothed curve (right) for the INTC stock.
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Figure 18: The empirical probability mass function of price changes (left) and average squared price
changes in 5 minute and 30 second intraday intervals with a smoothed curve (right) for the INTC
stock.
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Figure 19: The average diurnally adjusted squared price changes (left) and diurnally adjusted squared
price changes per second (right) in 50 millisecond and half second intervals of diurnally adjusted trade
durations with a smoothed curve for the INTC stock.

Table 11: The minimum, median, and maximum values of estimated parameters of various daily
models for the INTC stock.

Variance Models Overdispersion Models

Coef. Trans. I II III IV V VI VII VIII IX X

Min -0.080 -0.012 -0.081 -0.693 -0.697 -0.693
θ Med -0.050 -0.006 -0.050 -0.519 -0.526 -0.519

Max -0.012 -0.001 -0.011 -0.329 -0.337 -0.329

Min -1.930 -2.131 -1.930 -2.105 -2.061 -1.904 -3.160 -3.047 -2.051 -3.160
ω Med -1.760 -1.849 -1.760 -1.875 -1.839 -1.723 -2.516 -2.548 -1.812 -2.516

Max -1.570 -1.611 -1.570 -1.638 -1.616 -1.531 -1.194 -2.145 -1.509 -1.212

Min 0.540 0.740 0.540 0.989 0.798 0.988
φ Med 0.772 0.872 0.772 0.999 0.893 0.999

Max 0.974 0.982 0.977 1.000 0.992 1.000

Min 0.102 0.104 0.107 0.010 0.107 0.010
α Med 0.895 0.842 0.894 0.047 0.839 0.047

Max 1.325 1.018 1.324 0.208 1.027 0.208

Min 0.000 0.000 0.000 0.000 0.000 0.000
π Med 0.000 0.000 0.000 0.000 0.000 0.000

Max 0.000 0.063 0.102 0.028 0.074 0.016
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Table 12: The R2 statistics of residuals and squared residuals regressed on their lagged values with
the average log-likelihood of an observation for various daily models for the INTC stock.

Variance Models Overdispersion Models

Statistic Lag I II III IV V VI VII VIII IX X

1 0.132 0.061 0.129 0.079 0.061 0.131 0.000 0.000 0.077 0.000
AR R2 10 0.186 0.091 0.182 0.109 0.090 0.183 0.003 0.003 0.106 0.003

100 0.188 0.092 0.185 0.109 0.091 0.185 0.004 0.004 0.106 0.004

1 0.096 0.005 0.095 0.008 0.005 0.095 0.000 0.000 0.009 0.000
ARCH R2 10 0.143 0.012 0.142 0.010 0.012 0.139 0.002 0.003 0.011 0.002

100 0.175 0.029 0.174 0.022 0.029 0.165 0.006 0.016 0.020 0.007

Log-Likelihood -0.464 -0.436 -0.461 -0.442 -0.435 -0.467 -0.399 -0.401 -0.443 -0.399
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Figure 20: The daily values of various volatility realized measures for the INTC stock.

5:27



0.00

0.25

0.50

0.75

1.00

0 2 4 6 8 10
Trade Duration (Seconds)

D
is

tr
ib

ut
io

n 
F

un
ct

io
n

Distribution Function of Trade Durations

0.0

0.5

1.0

1.5

2.0

10:00 12:00 14:00 16:00
Time

S
ta

nd
ar

di
ze

d 
Tr

ad
e 

D
ur

at
io

n

Diurnal Pattern of Trade Durations

Figure 21: The empirical distribution function of trade durations (left) and average trade durations
in 5 minute and 30 second intraday intervals with a smoothed curve (right) for the MA stock.
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Figure 22: The empirical probability mass function of price changes (left) and average squared price
changes in 5 minute and 30 second intraday intervals with a smoothed curve (right) for the MA stock.
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Figure 23: The average diurnally adjusted squared price changes (left) and diurnally adjusted squared
price changes per second (right) in 50 millisecond and half second intervals of diurnally adjusted trade
durations with a smoothed curve for the MA stock.

Table 13: The minimum, median, and maximum values of estimated parameters of various daily
models for the MA stock.

Variance Models Overdispersion Models

Coef. Trans. I II III IV V VI VII VIII IX X

Min -0.197 -0.238 -0.351 -0.432 -0.552 -0.528
θ Med -0.118 -0.106 -0.167 -0.312 -0.468 -0.445

Max -0.078 -0.041 -0.098 -0.216 -0.392 -0.325

Min 2.495 2.264 2.923 1.602 2.689 2.539 2.032 2.671 0.745 2.261
ω Med 3.218 2.949 3.722 3.444 3.456 3.263 2.741 3.421 3.500 3.204

Max 3.974 4.061 4.000 3.994 4.004 3.903 3.800 3.892 3.913 3.916

Min 0.420 0.442 0.287 0.800 0.385 0.866
φ Med 0.953 0.986 0.963 0.976 0.982 0.989

Max 1.000 1.000 1.000 1.000 1.000 1.000

Min 0.001 0.000 0.000 0.000 0.000 0.000
α Med 0.047 0.021 0.031 0.050 0.020 0.033

Max 0.169 0.149 0.155 0.167 0.147 0.154

Min 0.250 0.000 0.231 0.244 0.234 0.228
π Med 0.332 0.322 0.323 0.329 0.317 0.319

Max 0.388 0.394 0.398 0.386 0.395 0.387
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Table 14: The R2 statistics of residuals and squared residuals regressed on their lagged values with
the average log-likelihood of an observation for various daily models for the MA stock.

Variance Models Overdispersion Models

Statistic Lag I II III IV V VI VII VIII IX X

1 0.125 0.055 0.086 0.118 0.061 0.123 0.005 0.007 0.118 0.008
AR R2 10 0.167 0.081 0.121 0.157 0.087 0.165 0.015 0.010 0.156 0.012

100 0.170 0.083 0.123 0.159 0.089 0.167 0.017 0.013 0.157 0.014

1 0.090 0.030 0.061 0.056 0.030 0.088 0.009 0.004 0.058 0.004
ARCH R2 10 0.122 0.038 0.099 0.068 0.045 0.121 0.020 0.035 0.071 0.020

100 0.149 0.044 0.126 0.077 0.054 0.149 0.025 0.058 0.081 0.026

Log-Likelihood -2.736 -2.626 -2.466 -2.451 -2.415 -2.734 -2.586 -2.413 -2.455 -2.382
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Figure 24: The daily values of various volatility realized measures for the MA stock.
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Figure 25: The empirical distribution function of trade durations (left) and average trade durations
in 5 minute and 30 second intraday intervals with a smoothed curve (right) for the MCD stock.

0.00

0.25

0.50

0.75

1.00

−10 −5 0 5 10
Price Change (Cents)

P
ro

ba
bi

lit
y 

M
as

s 
F

un
ct

io
n

Probability Mass Function of Price Changes

0

2

4

6

10:00 12:00 14:00 16:00
Time

S
qu

ar
ed

 S
ta

nd
ar

di
ze

d 
P

ric
e 

C
ha

ng
e

Diurnal Pattern of Squared Price Changes

Figure 26: The empirical probability mass function of price changes (left) and average squared price
changes in 5 minute and 30 second intraday intervals with a smoothed curve (right) for the MCD
stock.
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Figure 27: The average diurnally adjusted squared price changes (left) and diurnally adjusted squared
price changes per second (right) in 50 millisecond and half second intervals of diurnally adjusted trade
durations with a smoothed curve for the MCD stock.

Table 15: The minimum, median, and maximum values of estimated parameters of various daily
models for the MCD stock.

Variance Models Overdispersion Models

Coef. Trans. I II III IV V VI VII VIII IX X

Min -0.173 -0.135 -0.231 -0.377 -0.568 -0.490
θ Med -0.112 -0.045 -0.138 -0.297 -0.443 -0.394

Max -0.054 -0.008 -0.064 -0.232 -0.358 -0.305

Min 1.017 0.980 1.275 1.127 1.159 1.125 0.776 0.961 1.226 0.987
ω Med 1.466 1.383 1.802 1.578 1.616 1.573 1.212 1.473 1.684 1.446

Max 2.556 2.381 2.938 2.744 2.832 2.648 2.353 2.688 2.911 2.630

Min 0.745 0.821 0.783 0.904 0.817 0.942
φ Med 0.899 0.946 0.924 0.958 0.945 0.974

Max 0.992 0.996 0.996 0.999 0.999 0.998

Min 0.030 0.029 0.018 0.021 0.027 0.019
α Med 0.223 0.217 0.235 0.211 0.214 0.211

Max 0.425 0.461 0.466 0.278 0.435 0.308

Min 0.185 0.144 0.139 0.169 0.133 0.148
π Med 0.251 0.205 0.203 0.225 0.191 0.204

Max 0.343 0.310 0.307 0.325 0.303 0.299
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Table 16: The R2 statistics of residuals and squared residuals regressed on their lagged values with
the average log-likelihood of an observation for various daily models for the MCD stock.

Variance Models Overdispersion Models

Statistic Lag I II III IV V VI VII VIII IX X

1 0.123 0.047 0.102 0.095 0.050 0.120 0.005 0.003 0.094 0.004
AR R2 10 0.162 0.065 0.138 0.122 0.067 0.158 0.011 0.005 0.119 0.006

100 0.166 0.067 0.141 0.124 0.069 0.162 0.013 0.008 0.121 0.008

1 0.098 0.007 0.086 0.014 0.008 0.097 0.001 0.002 0.014 0.000
ARCH R2 10 0.147 0.008 0.139 0.015 0.010 0.148 0.003 0.040 0.016 0.002

100 0.190 0.020 0.181 0.021 0.018 0.192 0.007 0.073 0.022 0.006

Log-Likelihood -1.941 -1.833 -1.861 -1.814 -1.788 -1.933 -1.806 -1.792 -1.812 -1.760
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Figure 28: The daily values of various volatility realized measures for the MCD stock.
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Abstract: In finance, durations between successive transactions are usually modeled by the autore-
gressive conditional duration model based on a continuous distribution omitting zero values. Zero
or close-to-zero durations can be caused by either split transactions or independent transactions.
We propose a discrete model allowing for excessive zero values based on the zero-inflated negative
binomial distribution with score dynamics. This model allows to distinguish between the processes
generating split and standard transactions. We use the existing theory on score models to establish
the invertibility of the score filter and verify that sufficient conditions hold for the consistency and
asymptotic normality of the maximum likelihood of the model parameters. In an empirical study,
we find that split transactions cause between 92 and 98 percent of zero and close-to-zero values.
Furthermore, the loss of decimal places in the proposed approach is less severe than the incorrect
treatment of zero values in continuous models.

Keywords: Financial High-Frequency Data, Autoregressive Conditional Duration Model, Zero-
Inflated Negative Binomial Distribution, Generalized Autoregressive Score Model.

JEL Classification: C22, C41, C58.

1 Introduction

An important aspect of financial high-frequency data analysis is modeling of durations between various
events. These include times of recording of transactions (trade durations), times when price changes
by a given level (price durations), and times when volume reaches a given level (volume durations).
Financial durations exhibit strong serial correlation, i.e. long durations are usually followed by long
durations and short durations are followed by short durations. To capture this time dependence,
Engle and Russell (1998) proposed the autoregressive conditional duration (ACD) model.

We focus on trade durations and one of their particular empirical characteristics – the frequent
occurrence of zero durations, i.e. trades executed at the same time. Zero durations are typically
assumed to be caused by so-called split transactions, i.e. large trades broken into two or more smaller
trades (see e.g. Pacurar, 2008). Subsequently, observations with the same timestamp are merged and
the resulting prices are calculated as the average of prices weighted by volume. From the perspective
of time series of trade durations, zero values are simply discarded. There is an obvious issue with
this approach – unrelated transactions that just occur at the same time but do not originate from
the same source might be merged as well and their zero durations discarded. Nevertheless, this is
the most common approach in the ACD literature dating back to Engle and Russell (1998). Dealing
with zero values is even a necessity for ACD models based on distributions that do not contain zero
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in their support. Alternatively, Bauwens (2006) suggested setting zero durations to a small given
value instead of discarding them. This transformation allows to keep all observations in the dataset
but is quite arbitrary and distorts the distribution of durations near zero. From an economic point
of view, however, it makes sense to consider split transactions as one single trade (see e.g. Grammig
and Wellner, 2002).

Datasets analyzed by Engle and Russell (1998) and others at the turn of the millennium had
timestamps with precision to one second. Nowadays it is standard that transactions are recorded
with precision to one millisecond, one microsecond, or even one nanosecond by some exchanges.
This high detail causes an additional problem – split transactions do not have to occur at the exact
same time. An anecdotal evidence is presented in Table 1. This has already been recognized e.g.
by Grammig and Wellner (2002) who treated successive trades with either non-increasing or non-
decreasing prices within one second as one large trade. Let us take a closer look at a recent dataset
consisting of 6 stocks traded on the EURONEXT, NYSE, and NASDAQ exchanges with precision to
one millisecond obtained from the Thomson Reuters database. The right plot of Figure 1 shows the
density of the logarithm of durations estimated by the Parzen–Rosenblatt window method. Values
equal to exactly zero are omitted from this figure. The density of log-durations is concentrated in
two areas for each stock – a “hill” in the middle of the plot and a “wave” in the left part of the plot.
The “wave” shape is caused by discreteness of the data and captures durations close to zero. The
left-most spike corresponds to 0.001 seconds, the next to it to the right to 0.002, and so on. For
better readability of these close-to-zero durations, the left plot of Figure 1 shows their occurrence in
data. First of all, we can see that exactly zero durations make up between 43 and 67 percent of all
durations for the individual stocks. Durations equal to 0.001 are also quite frequent and make up
between 5 and 8 percent. Durations equal to 0.002 make up about 2 percent and 0.003 durations
about 1 percent. Other descriptive statistics are reported in Table 3. The main message here is that
Figure 1 suggests that durations are generated by two processes – one process generates dispersed
values corresponding to unrelated transactions and the other process generates zero or close-to-zero
values corresponding to split transactions.

The traditional approach which assumes that all split transactions have exactly zero duration
and all zero durations correspond to a split transaction is therefore not very suitable. Firstly, as
mentioned above, discarding all zero durations might also discard zero durations corresponding to
unrelated transactions. Secondly, and more importantly, keeping all positive durations might also
keep close-to-zero durations corresponding to split transactions. Discarding all zeros and no positive
values then leads to distorted distribution caused by inaccurate representation of values near zero.

We propose to model durations by a mixture of two processes generating unrelated and split
transactions respectively. We artificially reduce the precision of durations by rounding down the
values to hundredths of a second, i.e. centiseconds, and operate within a discrete framework. With
this reduced precision, we assume that all close-to-zero durations corresponding to split transactions
fall into the new group of exactly zero durations, i.e. their original values are lower than 0.01 seconds.
We then employ a zero-inflated distribution of Lambert (1992) for modeling of durations. This
distribution assumes that one process generates integer values greater or equal to zero and another
process generates only zero values. The probability of unrelated transactions with zero durations
is then determined by the distribution of positive values while the probability of split transactions
with zero durations is given by the inflation parameter of the zero-inflated distribution. We are
therefore able to estimate the ratio between unrelated and split transactions. In the empirical study,
we demonstrate that the loss of precision of durations is redeemed by the simplicity of our model and
its ability to accommodate for both unrelated and split transactions.

Given the discussion above, we propose in this paper a new zero-inflated autoregressive conditional
duration (ZIACD) model. We base our model on the negative binomial distribution to accommodate
for overdispersion in durations (see Boswell and Patil, 1970; Cameron and Trivedi, 1986; Christou
and Fokianos, 2014). The excessive zero durations caused by split transactions are captured by the
zero-inflated modification of the negative binomial distribution (see Greene, 1994). We let the scale,
dispersion, and inflation parameters of the distribution be time-varying and follow the dynamics of
generalized autoregressive score (GAS) models, also known as dynamic conditional score models (see
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Table 1: An excerpt from the limit order book of the MSFT stock on June 21, 2012.
Message Time Order ID Event Direction Size Price

09:30:01.146 16333185 Submission Buy 300 $30.99
...

09:30:01.370 16333185 Execution Buy 100 $30.99
09:30:01.377 16333185 Execution Buy 200 $30.99

...
09:30:03.550 16576783 Submission Sell 3000 $30.99

...
09:30:03.553 16576783 Execution Sell 400 $30.99
09:30:03.555 16576783 Execution Sell 400 $30.99
09:30:03.555 16576783 Execution Sell 300 $30.99
09:30:03.627 16576783 Deletion Sell 1900 $30.99

Creal et al., 2013; Harvey, 2013). In the GAS framework, time-varying parameters are dependent on
their lagged values and a scaled score of the conditional observation density.

In this paper, we establish the invertibility of the GAS filter for the ZIACD model and the
consistency and asymptotic normality of the maximum likelihood estimator for the case of time-
varying scale parameter and static dispersion and zero-inflation parameters. In an empirical study
of the stock market, we demonstrate that the proposed ZIACD model for durations rounded to
centiseconds is usable in practice and is superior to continuous models with the incorrect treatment
of zero values.

The rest of the paper is structured as follows. In Section 3, we review the related literature on
ACD and GAS models. In Section 3, we propose the ZIACD model based on the zero-inflated negative
binomial distribution. In Section 4, we verify the asymptotic properties of the maximum likelihood
estimator for the case of time-varying scale. In Section 5, we describe characteristics of financial
durations data, fit the proposed ZIACD model within a discrete framework, and compare it to a
continuous model. In Section 6, we discuss the use of the proposed ZIACD model for low-precision
data and alternative mixture ACD models as topics for future research. We conclude the paper in
Section 7.

2 Literature Review

In this section, we examine two fundamental cornerstones of our paper: the Autoregressive Con-
ditional Duration (ACD) model and the Generalized Autoregressive Score (GAS) model. These
established models serve as the foundation for our novel contribution, the zero-inflated autoregressive
conditional duration (ZIACD) model.

2.1 Autoregressive Conditional Duration Models

Since the seminal paper of Engle and Russell (1998), many extensions of the original ACD model have
been proposed in the literature. Bauwens and Giot (2000) introduced the logarithmic ACD model
utilizing the logarithmic transformation and exogenous variables. Logarithmic model with a slightly
different dynamic was considered by Lunde (1999). Other proposed models include the fractionally
integrated ACD model of Jasiak (1998), threshold ACD model of Zhang et al. (2001), Box-Cox ACD
model of Hautsch (2001, 2003), asymmetric ACD model of Bauwens and Giot (2003), additive and
multiplicative ACD model of Hautsch (2012), and directional ACD model of Jeyasreedharan et al.
(2014). Time-varying and non-stationary ACD models were studied by Bortoluzzo et al. (2010) and
Mishra and Ramanathan (2017). Joint models for durations and prices were proposed by Engle
(2000), Grammig and Wellner (2002), Russell and Engle (2005) and Herrera and Schipp (2013).
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Figure 1: The probability of durations between 0 and 0.01 seconds (left plot) and the density function
of logarithmic durations estimated using the Gaussian kernel (right plot) in June, 2021. Zero durations
are excluded.

Ghysels et al. (2004) proposed the stochastic volatility duration model, which accounts for mean
and variance dynamics in financial duration processes. Additionally, Bauwens and Veredas (2004)
introduced the stochastic conditional duration (SCD) model, which was further extended by Feng
(2004) and Xu et al. (2011). Feng (2004) proposed the SCD model with leverage effect and Xu
et al. (2011) added an interaction element between the duration process and the latent autoregressive
process. Hujer et al. (2005) proposed Markov switching ACD model that extends the traditional
ACD model by introducing an unobservable stochastic process modeled by a Markov chain. Chen
et al. (2013) proposed Markov-switching multifractal duration model, which allows for modeling long
memory in the duration process. Fernandes and Grammig (2006) developed a family of ACD models
that encompasses most common specifications, where the nesting relies on a Box-Cox transformation.

Numerous studies in the literature also explore the incorporation of information about zero dura-
tions. Zhang et al. (2001) included an indicator of multiple transactions as an explanatory variable in
their ACD model. Veredas et al. (2002) noticed that many simultaneous transactions occur at round
prices suggesting many traders post limit orders to be executed at round prices – this is an empir-
ical phenomenon known as price clustering (see e.g. the literature review in Holý and Tomanová,
2022). More recently, Liu et al. (2018) examined the effect of zero durations on integrated volatility
estimation.

The first ACD models analyzed by Engle and Russell (1998) utilize the exponential and Weibull
distributions. However, since then, various continuous distributions have been employed in duration
modeling; an overview can be found in Table 2. Additionally, several studies in the literature have
proposed ACD models based on mixtures of distributions. De Luca and Zuccolotto (2003) and De
Luca and Gallo (2004) suggested using a mixture of two exponential distributions to capture distinct
behaviors of informed and uninformed traders. This work was further extended by De Luca and
Gallo (2009), proposing the incorporation of the two exponential distributions with time-varying
weights. On the other hand, to account for the unobserved market heterogeneity of traders, Gómez-
Déniz and Pérez-Rodríguez (2016, 2017) proposed finite and infinite mixture of distributions based
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Table 2: The use of continuous distributions in ACD models.
Article Distribution Parameters

Engle and Russell (1998) Exponential 1
Engle and Russell (1998) Weibull 2
Lunde (1999) Generalized Gamma 3
Grammig and Maurer (2000) Burr 3
Hautsch (2001) Generalized F 4
Bhatti (2010) Birnbaum–Saunders 2
Xu (2013) Log-Normal 2
Leiva et al. (2014) Power-Exponential B–S 3
Leiva et al. (2014) Student’s t B–S 3
Zheng et al. (2016) Fréchet 2

on non-exponentials, specifically a mixture of an inverse Gaussian distribution. For a survey of
duration analysis, see Pacurar (2008), Bauwens and Hautsch (2009), Hautsch (2012), and Saranjeet
and Ramanathan (2018).

2.2 Generalized Autoregressive Score Models

Generalized autoregressive score (GAS) models (Creal et al., 2013), also known as dynamic conditional
score models (Harvey, 2013), capture dynamics of time-varying parameters by the autoregressive
term and the scaled score of the conditional observation density (see Section 3.3 for further details).
GAS models belong to the class of observation-driven models, as defined by Cox (1981), and thus
have their advantages, e.g. observation-driven models can be estimated in a straightforward manner
by the maximum likelihood method and their parameters are perfectly predictable given the past
information. Moreover, Blasques et al. (2015) investigated information-theoretic optimality properties
of the score function of the predictive likelihood and showed that only parameter updates based on the
score will always reduce the local Kullback–Leibler divergence between the true conditional density
and the model-implied conditional density. Koopman et al. (2016) find that observation-driven models
based on the score perform comparably to parameter-driven models in terms of predictive accuracy.

The GAS specification includes many commonly used econometric models. For example, the GAS
model with the normal distribution, the inverse of the Fisher information scaling and time-varying
variance results in the GARCH model while the GAS model with the exponential distribution, the
inverse of the Fisher information scaling and time-varying expected value results in the ACD model
(Creal et al., 2013). The GAS framework can be utilized for discrete models as well. Koopman
et al. (2018) used discrete copulas based on the Skellam distribution for high-frequency stock price
changes. Koopman and Lit (2019) used the bivariate Poisson distribution for a number of goals in
football matches and the Skellam distribution for a score difference. Gorgi (2018) used the Poisson
distribution as well as the negative binomial distribution for offensive conduct reports. Holý and
Tomanová (2022) used a mixture of double Poisson distributions to model price clustering in high-
frequency prices.

Andres and Harvey (2012) specified ACD-like models belonging to the GAS framework and applied
them to intra-day stock market data, considering both range and duration. Tomanová and Holý
(2021) utilized the GAS model based on the generalized gamma distribution in the spirit of ACD
models, and demonstrated that this approach outperforms the traditional method that assumes times
between arrivals follow the exponential distribution with a constant rate, making it a superior choice
for modeling arrivals in queueing systems.

A comprehensive list of papers on GAS models can be found at http://gasmodel.com.

3 Zero-Inflated ACD Model

Let T0 ≤ T1 ≤ · · · ≤ Tn be random variables denoting times of transactions. Trade durations are
then defined as Xi = Ti − Ti−1 for i = 1, . . . , n. As we operate in a discrete framework, we assume
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Ti ∈ N0, i = 0, . . . , n and Xi ∈ N0, i = 1, . . . , n.1 We further assume trade durations Xi to follow
some given discrete distribution with conditional probability mass function P [Xi = xi|θ], where xi
are observations and θ = (θ1, . . . , θl)

′ are parameters. First, we consider trade durations to follow
the negative binomial distribution. Next, we extend the negative binomial distribution to capture
excessive zeros using the zero-inflated model. Finally, we let parameters be time-varying with the
generalized autoregressive score dynamics.

3.1 Negative Binomial Distribution

Non-negative integer variables are commonly analyzed using count data models based on specific
underlying distribution, most notably the Poisson distribution and the negative binomial distribution
(see Cameron and Trivedi, 2013). A distinctive feature of the Poisson distribution is that its expected
value is equal to its variance. This characteristic is too strict in many applications as count data often
exhibit overdispersion, a higher variance than the expected value. A generalization of the Poisson
distribution overcoming this limitation is the negative binomial distribution with one parameter
determining its expected value and another parameter determining its excess dispersion.

The negative binomial (NB) distribution can be derived in many ways (see Boswell and Patil,
1970). We use the NB2 parameterization of Cameron and Trivedi (1986) derived from the Poisson-
gamma mixture distribution. It is the most common parametrization used in the negative binomial
regression according to Cameron and Trivedi (2013). The probability mass function with scale pa-
rameter µ > 0 and dispersion parameter α ≥ 0 is

P[Xi = xi|µ, α] =
Γ(xi + α−1)

Γ(xi + 1)Γ(α−1)

(
α−1

α−1 + µ

)α−1 (
µ

α−1 + µ

)xi
for xi = 0, 1, 2, . . . . (1)

The expected value and variance is
E[Xi] = µ,

var[Xi] = µ(1 + αµ).
(2)

Special cases of the negative binomial distribution include the Poisson distribution for α = 0 and the
geometric distribution for α = 1.

3.2 Zero-Inflation

The zero-inflated distribution is an extension of a discrete distribution allowing the probability of
zero values to be higher than the probability given by the original distribution. In the zero-inflated
distribution, values are generated by two components – one component generates only zero values
while the other component generates integer values (including zero values) according to the original
distribution. Lambert (1992) proposed the zero-inflated Poisson model and Greene (1994) used zero-
inflated model for the negative binomial distribution.

The zero-inflated negative binomial distribution is a discrete distribution with three parameters:
scale parameter µ > 0, dispersion parameter α ≥ 0 and probability of excessive zero values π ∈ [0, 1).
The variable Xi follows the zero-inflated negative binomial distribution if

Xi ∼ 0 with probability π,
Xi ∼ NB(µ, α) with probability 1− π.

(3)

The first process generates only zeros and corresponds to split transactions, while the second process
generates values from the negative binomial distribution and corresponds to regular transactions. The

1Note that this assumption is not restrictive since durations are naturally discrete and non-negative. Thus when
expressed in the units corresponding to precision of the timestamps (e.g. seconds, milliseconds, . . . ), the durations are
natural numbers (with zero).
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probability mass function is

P[Xi = 0|µ, α, π] = π + (1− π)

(
α−1

α−1 + µ

)α−1

,

P[Xi = xi|µ, α, π] = (1− π)
Γ(xi + α−1)

Γ(xi + 1)Γ(α−1)

(
α−1

α−1 + µ

)α−1 (
µ

α−1 + µ

)xi
for xi = 1, 2, . . . .

(4)

The expected value and variance is

E[Xi] = µ(1− π),

var[Xi] = µ(1− π)(1 + πµ+ αµ).
(5)

The score vector is given by

∇(xi, µ, α, π) =




(π − 1)(αµ+ 1)−1
(
1 + π(αµ+ 1)α

−1 − π
)−1

α−2
(
ln(αµ+ 1)− αµ(αµ+ 1)−1

)(
1− π(π − 1)−1(αµ+ 1)α

−1
)−1

(
(αµ+ 1)α

−1 − 1
)(

1 + π(αµ+ 1)α
−1 − π

)−1




(6)

for xi = 0 and

∇(xi, µ, α, π) =




µ−1(xi − µ)(αµ+ 1)−1

α−2
(
ln(αµ+ 1) + α(xi − µ)(αµ+ 1)−1 + ψ0(α

−1)− ψ0(xi + α−1)
)

(π − 1)−1


 (7)

for xi = 1, 2, . . ..

3.3 Score-Driven Dynamics

Generalized autoregressive score (GAS) models (Creal et al., 2013) capture dynamics of time-varying
parameters f̃i = (f̃i,1, . . . , f̃i,k)

′ by the autoregressive term and the scaled score of the conditional
observation density (or the conditional observation probability mass function in the case of discrete
distribution). The time-varying parameters f̃i follow the recursion

f̃i+1 = C +Bf̃i +AS(f̃i)∇(xi, f̃i), (8)

where C = (c1, . . . , ck)
′ are the constant parameters, B = diag(b1, . . . , bk) are the autoregressive

parameters, A = diag(a1, . . . , ak) are the score parameters, S(f̃i) is the scaling function for the score
and ∇(xi, f̃i) is the score. In the original paper of Creal et al. (2013), authors noted that via the
choice of the scaling function S(f̃i), the GAS model allows for additional flexibility in how the score
is used for updating f̃i. The commonly used scaling functions in the GAS literature are based on the
Fisher information matrix. We explored this option, however, we have not found it very suitable for
the GAS model with the negative binomial distribution since the Fisher information for the parameter
α does not have a closed-form. Consequently, the approximation of the Fisher information brings
undue computational complexity resulting in an overly time-consuming optimization procedure. In
order to keep our model simple, from now on we avoid the scaling, which is also a widely used option
in the GAS literature. Moreover, Holý (2020) showed that the differences of models performance
based on different scaling functions are negligible in the case of the negative binomial distribution.

The long-term mean and unconditional value of the time-varying parameters is f̃ = (I −B)−1C.
The parameters f̃i in (8) are assumed to be unbounded. However, some distributions require bounded
parameters (e.g. variance greater than zero). The standard solution in the GAS framework is to use
an unbounded parametrization fi = H(f̃i), which follows the GAS recursion instead of the original
parametrization f̃i, i.e.

fi+1 = c+ bfi + as(xi, fi), (9)

6:7



where c are the constant parameters, b are the autoregressive parameters, a are the score parameters,
and s(xi, fi) is the reparametrized score. The reparametrized score equals to

s(xi, fi) = Ḣ−1(f̃i)∇(xi, f̃i), (10)

where Ḣ(f̃i) = ∂H(f̃i)/∂f̃
′
i is the derivation of H(f̃i).

3.4 Zero-Inflated Autoregressive Conditional Duration Model

We consider a model where observations follow the zero-inflated negative binomial distribution with
the time-varying scale parameter µi, time-varying dispersion parameter αi and time-varying inflation
parameter πi specified in (4). We use an unbounded parametrization with the exponential link
for the scale and dispersion parameters and logistic transformation for the inflation parameter, i.e.
fi = (ln(µi), ln(αi), ln(πi/(1− πi)))

′. Parameters fi are assumed to follow the recursion in (9), where
the score for the zero-inflated negative binomial distribution is given by

s(xi, fi) =




µi(πi − 1)(αiµi + 1)−1
(
1 + πi(αiµi + 1)α

−1
i − πi

)−1

α−1
i

(
ln(αiµi + 1)− αiµi(αiµi + 1)−1

)(
1− πi(πi − 1)−1(αiµi + 1)α

−1
i

)−1

πi(1− πi)
(
(αiµi + 1)α

−1
i − 1

)(
1 + πi(αiµi + 1)α

−1
i − πi

)−1




(11)

for xi = 0 and

s(xi, fi) =




(xi − µi)(αiµi + 1)−1

α−1
i

(
ln(αiµi + 1) + αi(xi − µi)(αiµi + 1)−1 + ψ0(α

−1
i )− ψ0(xi + α−1

i )
)

−πi


 (12)

for xi = 1, 2, . . ..

4 Estimation and Asymptotic Properties

In this section, we focus on the model with the time-varying scale parameter µi and static dispersion
α and inflation π parameters. As such we set fi = ln(µi) and θ = (α, π, c, b, a)′. The score in (11)
and (12) simplifies to

s(0, fi) =
(π − 1) exp(fi)

(α exp(fi) + 1)
(
1 + π(α exp(fi) + 1)α−1 − π

) ,

s(xi, fi) =
xi − exp(fi)

α exp(fi) + 1
for xi = 1, 2, . . . .

(13)

For this GAS model with dynamics defined in (9) and (13), we establish the invertibility of the score
filter and verify that sufficient conditions hold for the consistency and asymptotic normality of the
maximum likelihood of the model parameters.

The static parameter vector θ is estimated by the method of maximum likelihood

θ̂n ∈ argmax
θ∈Θ

L̂n(θ), (14)

where L̂n(θ) denotes the log likelihood function obtained from a sequence of n observations x1, . . . , xn,
which depends on the filtered time-varying parameter f̂1(θ), ..., f̂n(θ). Since we are dealing with
observation-driven filters which require an initialization value f̂1, we make an important distinc-
tion here between L̂n(θ) and Ln(θ). The first log likelihood is a function of the filtered parameter
f̂1(θ), ..., f̂n(θ) initialized at a given value f̂1. The second likelihood is a function of the filtered pa-
rameter f1(θ), ..., fn(θ) initialized at the true unobserved value f1. Of course, since f1 is unobserved,
we typically have that f̂1 ̸= f1. In practice, the sample log likelihood is thus given by

L̂n(θ) =
1

n

n∑

i=1

ℓ̂i(xi, θ) =
1

n

n∑

i=1

lnP[Xi = xi|f̂i(θ), θ]. (15)
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In our case, the log likelihood is based on the zero-inflated negative binomial distribution

lnP[Xi = 0|f̂i(θ), θ] = ln

(
π + (1− π)

(
α−1

α−1 + µi

)α−1)
,

lnP[Xi = xi|f̂i(θ), θ] = ln(1− π) + ln
Γ(xi + α−1)

Γ(xi + 1)Γ(α−1)
+

1

α
ln

(
α−1

α−1 + exp(f̂i)

)

+ xi ln

(
exp(f̂i)

α−1 + exp(f̂i)

)
for xi = 1, 2, . . . .

(16)

Below, we show that the maximum likelihood estimator of the ZIACD model is consistent and asymp-
totically normal. The proof follows the structure laid down in Blasques et al. (2022), but we focus
on the particular case of discrete data {xi}i∈N with a probability mass function P[Xi = xi|fi(θ), θ].
In contrast, Blasques et al. (2022) treat a general case for continuous data with a smooth probability
density function.

4.1 Filter Invertibility

Filter invertibility is crucial for statistical inference in the context of observation-driven time-varying
parameter models; see e.g. Straumann and Mikosch (2006), Wintenberger (2013), and Blasques et al.
(2022). The filter {f̂i(θ)}i∈N initialized at some point f̂1 ∈ R is said to be invertible if f̂i(θ) converges
almost surely exponentially fast to a unique limit strictly stationary and ergodic sequence {fi(θ)}i∈Z,

|f̂i(θ)− fi(θ)| eas→ 0 as i→ ∞.

Let Ln(θ) denote the log likelihood which depends on the limit time-varying parameter f1(θ), ..., fn(θ)

Ln(θ) =
1

n

n∑

i=1

ℓi(xi, θ) =
1

n

n∑

i=1

lnP[Xi = xi|fi(θ), θ],

and let L∞ denote the limit log likelihood function

L∞(θ) = E[ℓi(θ)] = E [lnP[Xi = xi|fi(θ), θ]] .

Proposition 1 appeals to the results in Blasques et al. (2022) to establish the invertibility of the
score filter with zero-inflated negative binomial distribution as stated in (9) and (13). The proof
presented in Technical Appendix A is an application of the results in Blasques et al. (2022) to our
current model.

Proposition 1 (Filter invertibility). Consider the score-driven model with zero-inflated negative bi-
nomial distribution in (9) and (13). Let the observed data {xi}i∈N be strictly stationary and ergodic,
with a logarithmic moment E[ln+ |xi|] <∞, and let Θ be a compact parameter space defined as

Θ = [α−, α+] · [π−, π+] · [c−, c+] · [b−, b+] · [a−, a+]

and satisfying the following restrictions

a+(π− − 1)2

2α− +
a+|π− − 1|

(α−)2
+ b+ < 1,

Exi>0

[
ln

(
a+(α+xi + 1)

4α− + b+
)]

< 0.

Then the filter {f̂i(θ)}i∈N defined as f̂i+1 = c+ bf̂i + as(xi, f̂i) is invertible, uniformly in θ ∈ Θ.
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4.2 Consistency

Proposition 1 gives us sufficient elements to characterize the asymptotic behavior of the ML estimator.
This section uses existing theory on score models in Blasques et al. (2022) to verify the strong
consistency of the ML estimator θ̂n as the sample size n diverges to infinity.

For completeness, Lemma 1 states conditions for the consistency of the ML estimator. A sketch
of the proof is offered in Technical Appendix A, and appropriate references are offered. This theorem
naturally uses the invertibility properties established in Proposition 1 for our zero-inflated negative
binomial score model. Following Blasques et al. (2022), this theorem allows for potential model
mispecification.

Lemma 1 (Consistency of the ML estimator). Let the conditions of Proposition 1 hold. Suppose
further that the observed data has one bounded moment E[xi] <∞, and let θ0 be the unique maximizer
of the limit log likelihood function E[ℓi(xi, ·)] : Θ → R over the parameter space Θ. Then θ̂n

as→ θ0 ∈ Θ
as n→ ∞.

4.3 Asymptotic Normality

Finally, we shed some light on the
√
n-consistency rate of θ̂n and the asymptotic normality of the

standardized estimator
√
n(θ̂n − θ0) as n → ∞, when the model is well specified. For completeness,

Lemma 2 summarizes standard conditions for asymptotic normality. A sketch of the proof is presented
in Technical Appendix A, and we refer to Blasques et al. (2022) for additional details.

Lemma 2 (Asymptotic normality of the ML estimator). Let the conditions of Lemma 1 hold. Suppose
that the observed data has four bounded moments E|xi|4 < ∞, and let the true parameter lie in the
interior of the parameter space, i.e. θ0 ∈ int(Θ). Finally, let the further regularity conditions stated
in Theorem 4.16 of Blasques et al. (2022) hold. Then the ML estimator is asymptotically Gaussian

√
n(θ̂n − θ0)

d→ N(0, I(θ0)−1) as n→ ∞,

where I(θ0)−1 denotes the inverse Fisher information matrix.

5 Empirical Study

5.1 Data Overview

In our empirical study, we analyze transaction data extracted from the Thomson Reuters Eikon.
Eikon provides access to real-time market data and also contains historical intraday transactions.
The data are taken from June to July of 2021. We analyze 6 stocks: ING Groep (INGA) and ASML
Holding (ASML) which are listed on EURONEXT; McDonald’s Corporation (MCD) and International
Business Machines Corporation (IBM) which are listed on NYSE; Cisco Systems, Inc. (CSCO) and
Microsoft Corporation (MSFT) which are listed on NASDAQ.

We clean data using the following procedure. First, we delete observations with the timestamp
outside the main trading hours and trading days. Second, for EURONEXT stocks, we delete all ob-
servations with the timestamps equal to the first timestamp of the day that occurs between 09:00:00
and 09:00:30. The reason is that the opening uncrossing (resulting from the morning auction) ran-
domly occurs between 09:00:00 and 09:00:30. Third, we round the timestamp to the right precision
(i.e. milliseconds) to fix the incorrect representation of the float.2

The statistical characteristics for cleaned data are presented in Table 3. The two analyzed stocks
listed on the NASDAQ belong to the most liquid stocks, while the stocks listed on the EURONEXT
represent the least liquid stocks in our dataset. In June 2021, exact zero durations range from 43.01
percent (MCD) to 67.19 percent (ASML) and durations lower than 1 second form up to 98.57 percent
(MSFT) of the dataset. For further descriptive statistics, see Table 3.

2For all analyzed stocks we observed that the sorted unique duration values are: 0, 0.000999927520751953,
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Table 3: Descriptive statistics of trade durations in June and July, 2021.
EURONEXT NYSE NASDAQ

Statistic Sample INGA ASML MCD IBM CSCO MSFT

% = 0 June 64.11 67.19 43.01 47.97 53.73 49.05
July 57.78 65.66 46.01 48.75 54.14 48.93

% < 0.01 June 73.70 76.30 56.98 61.63 66.86 63.86
July 67.52 74.53 59.78 63.01 67.11 63.93

% < 0.1 June 77.53 79.77 65.02 68.81 74.82 77.81
July 71.86 78.50 67.18 71.13 74.48 79.20

% < 1 June 82.31 84.73 82.91 85.72 91.37 98.57
July 78.37 85.11 84.59 88.75 90.72 99.05

Mean June 1.56 1.19 0.58 0.47 0.26 0.10
July 1.72 0.91 0.52 0.37 0.29 0.08

Variance June 27.85 18.69 1.90 1.43 0.54 0.05
July 26.01 10.31 1.72 1.02 0.63 0.04

Std. Dev. June 5.28 4.32 1.38 1.19 0.73 0.23
July 5.10 3.21 1.31 1.01 0.79 0.20

95%-Quantile June 9.94 7.50 3.25 2.70 1.60 0.54
July 10.48 5.66 2.96 2.14 1.73 0.46

Obs. per Min. June 38.48 50.50 103.55 128.53 227.47 622.69
July 34.88 66.00 115.11 163.22 210.39 723.17

Total Obs. June 431 441 566 303 888 400 1 102 742 1 951 673 5 342 645
July 391 156 740 150 942 707 1 336 712 1 641 075 5 922 788
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5.2 In-Sample Performance

We use the proposed ZIACD model based on the zero-inflated negative binomial distribution with the
time-varying scale, dispersion, and zero inflation parameters to fit observed durations rounded down
to hundredths of a second using data from June 2021. The estimated coefficients are reported in Table
4. All coefficients are significant at any reasonable level and their standard deviations are virtually
zero due to huge sample sizes ranging from 431463 (INGA) to 5342667 (MSFT). We, therefore, report
only the estimated values. The numbers of observations per minute are also reported in Table 3. As
expected, the coefficient controlling the impact of the score a is positive for all three parameters and
all six stocks. This means that the score serves as a correction term that adjusts the time-varying
parameters for the observed values. The autoregressive coefficient b is also positive and quite high
for all three parameters and all six stocks. In the case of the scale parameter, it is very close to one
signaling high persistence of the time series.

Table 5 reports the average values of the scale, dispersion, and zero inflation parameters over
time. Note that the average scale parameter (adjusted to seconds) is much higher than the sample
mean reported in Table 3 as our model is able to separate zeros attributed to split transactions which
subsequently do not affect the scale parameter. On average, between 53.27 percent (MCD) and 74.88
percent (ASML) of all durations are excessive zeros generated by split transactions depending on the
stock. This corresponds to the ratio of excessive zeros to all zeros ranging between 91.81 percent
(MSFT) and 98.13 percent (ASML). In other words, between 1.87 percent (ASML) and 8.19 percent
(MSFT) of zero durations are generated by unrelated transactions which should not be discarded
from the data.

Table 5 also evaluates the fit of the ZIACD model. The mean absolute error is between 0.11
seconds (MSFT) and 2.50 seconds (INGA) while the root mean square error is between 0.21 (MSFT)
and 5.22 (INGA). These values are quite high when compared to the predicted value µi(1 − πi),
on which both errors are based, with its mean ranging from 0.09 seconds (MSFT) to 1.58 seconds
(INGA). This is caused by the fact that the predicted value is not very representative of the whole
distribution as, on average, between 53.27 percent (MCD) and 74.88 percent (ASML) of all values
are exactly zero while the rest have expected value between 0.22 seconds (MSFT) and 5.68 seconds
(INGA). It is therefore more suitable to assess the fit of the model based on the whole distribution.

We focus on the probability of zeros given by the model. Table 5 reports the mean probabilities
of zero value given by the model when the observed value is indeed zero and when the observed
value is positive. For the INGA and ASML stocks, the difference between these two probabilities is
lower than one percent suggesting a limited benefit of the dynamics in the zero-inflation parameter.
For the more traded stocks, the difference is between 5.78 percent (MCD) and 9.58 percent (CSCO)
suggesting a certain degree of predictive ability of the zero-inflation dynamics.

The left plot of Figure 2 studies the fit of the model in more detail by comparing the average
conditional probabilities given by the ZIACD model with the unconditional empirical distribution.
The largest deviation is -0.68 percent at 0.01 seconds for the MCD stock. This deviation is rather
small but uncovers a systematic error as the probability of 0.01 durations is underestimated for all
stocks. Similar underestimation is also present at 0.06 seconds for the ASML and INGA stocks traded
on the EURONEXT exchange and at 0.10 seconds for all stocks. The latter two anomalies are also
visible in the right plot of Figure 1 at -2.81 and -2.30 log-durations. The proposed model is therefore
incorrectly specified and the true distribution of durations is much more complex. Nevertheless, the
deviations of the conditional ZIACD probabilities are quite small and the model is usable in practice.

5.3 Out-of-Sample Performance

In this section, we use the models estimated using durations from June 2021 and perform one-step-
ahead forecasts during July 2021 to assess their long-term behavior. The right plot of Figure 2 shows
deviations of the average out-of-sample conditional probabilities given by the ZIACD model from the

0.00100016593933105, 0.00199985504150391, 0.00200009346008301, . . . . The Thomson Reuters data are stamped with
precision to one millisecond and this strange behavior is caused by an issue related to the representation of the float,
which can be easily fixed by rounding.
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Table 4: The estimated coefficients of the zero-inflated negative binomial model.
EURONEXT NYSE NASDAQ

Parameter Coef. INGA ASML MCD IBM CSCO MSFT

c 0.006068 0.002591 0.000011 0.000151 0.000180 0.000064
Scale a 0.109420 0.089377 0.032544 0.032434 0.051552 0.032155

b 0.998958 0.999509 0.999996 0.999954 0.999913 0.999938

c 0.006364 0.061190 0.148700 0.129161 0.042488 0.000869
Dispersion a 0.057713 0.216293 0.289589 0.243921 0.136988 0.021367

b 0.992826 0.927438 0.806245 0.815294 0.948153 0.998387

c 0.030722 0.017910 0.048158 0.138758 0.116703 0.119207
Zero Inflation a 0.164058 0.100389 2.129143 2.177550 2.672883 2.542853

b 0.968110 0.983785 0.680476 0.668047 0.856934 0.743213

Table 5: The mean scale parameter (in seconds), the mean dispersion parameter, the mean inflation
parameter (in percent), the mean ratio of zeros caused by split transactions (in percent), the mean
predicted value (in seconds), the mean absolute error (in seconds), the root mean square absolute
error (in seconds), the mean probabilities of zero value given by the zero-inflated negative binomial
model when the observation is either zero or positive (in percent), and the mean log-likelihood.

EURONEXT NYSE NASDAQ

Variable INGA ASML MCD IBM CSCO MSFT

Mean Scale 5.68 4.89 1.28 1.14 0.70 0.22
Mean Dispersion 2.45 2.35 2.17 2.02 2.26 1.70
Mean Zero Inflation 72.06 74.88 53.27 58.60 63.01 58.63
Mean Split Ratio 97.78 98.13 93.49 95.09 94.23 91.81
Mean Predicted Value 1.58 1.22 0.60 0.48 0.27 0.09
Mean Absolute Error 2.50 1.96 0.72 0.59 0.31 0.11
Root Mean Square Error 5.22 4.28 1.29 1.11 0.66 0.21
P[Xi = 0] When xi = 0 67.48 67.97 65.60 66.47 69.15 69.66
P[Xi = 0] When xi > 0 67.09 67.74 59.81 60.62 59.57 61.52
Mean Log-Likelihood -2.42 -2.17 -3.01 -2.69 -2.16 -2.00
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Figure 2: The in-sample and out-of-sample difference between the conditional probabilities given by
the zero-inflated negative binomial model and the unconditional distribution of observations.

unconditional empirical distribution. Similarly to the left plot of Figure 2, the probabilities at 0.01,
0.06, and 0.10 seconds are systematically underestimated. However, the highest deviations are in the
case of the probabilities of zero durations. The difference in probability reaches 3.02 percent (INGA)
and drops down to -1.25 percent (MCD). This is related to a change in the occurrence of zero values
in July. According to Table 3, the unconditional probability of zero values decreases from 64.11 to
57.78 percent for the INGA stock while it increases from 43.01 to 46.01 percent for the MCD stock.
Note that the other descriptive statistics in Table 3 also change considerably.

However, this does not translate to a significant decrease in the log-likelihood. Figure 3 shows
no apparent trend in the out-of-sample average daily log-likelihood, which is further supported by a
simple linear regression analysis. This indicates that while the model may not be capable of accu-
rately predicting long-term changes in the process, its forecasting performance does not significantly
deteriorate over the long run. Furthermore, it should be noted that despite the overall stable perfor-
mance, there is a noticeable volatility in day-to-day changes in the log-likelihood. This suggests that
the accuracy of forecasts can vary significantly from one day to another.

To summarize, the proposed model is best suited for short-term predictions. For capturing chang-
ing characteristics of durations, it would be more appropriate to use a non-stationary model. As
for the long-term dynamics of excessive zero probability, we leave this analysis as a topic for future
research.

5.4 Model Specification

We compare the proposed ZIACD model, which is based on the zero-inflated negative binomial dis-
tribution and has all three parameters time-varying, with models imposing some restrictions. Specif-
ically, Table 7 compares models based on the Poisson, geometric, and negative binomial distributions
together with their zero-inflated versions. All parameters in these models are time-varying. On the
other hand, Table 6 compares models based on the zero-inflated negative binomial distribution with
some parameters static and some time-varying. We use two criteria to compare the models – the
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Figure 3: The in-sample and out-of-sample average daily log-likelihood of the zero-inflated negative
binomial model.

difference in the Akaike information criterion (AIC) for the in-sample fit and the Diebold-Mariano
(DM) statistic for the out-of-sample fit. When comparing two models, a positive difference in the
AIC favors the second model over the first model while a positive value of the DM statistic favors
the first model over the second model. The DM statistic has asymptotically the standard normal
distribution under the null hypothesis of equivalent out-of-sample log-likelihoods. More details on
these criteria are given in Technical Appendix B. Not surprisingly in such large datasets, the most
general specification of the model has the best fit. We do not report p-values for the DM statistic as
it is significant at any reasonable level in all cases due to huge sample sizes.

There is clear evidence of overdispersion, i.e. the variance higher than the expected value. Accord-
ing to Table 5, the average value of the dispersion parameter α in the zero-inflated negative binomial
model ranges between 1.70 (MSFT) and 2.45 (INGA). This favors the negative binomial distribution
over the Poisson distribution with fixed α = 0 and the geometric distribution with fixed α = 1.
Overdispersion is also supported by the difference in the AIC and the DM statistic reported in Table
6. The Poisson distribution has the highest AIC for all stocks while the geometric distribution has the
worst DM statistic compared to the zero-inflated negative binomial distribution. One possible reason
for overdispersion could just be the presence of excessive zeros. Indeed, the zero-inflated Poisson and
geometric distributions perform better than their original versions. However, they are still inferior
to the zero-inflated negative binomial distribution suggesting that there is overdispersion present in
non-zero values as well. Table 7 further shows that the specification with the time-varying dispersion
parameter performs significantly better than the static one. This improvement of the in-sample and
out-of-sample fit is, however, the smallest among all specifications in Tables 6 and 7. For some smaller
data samples of less traded assets or with shorter periods of time (such as a day), the model with
static dispersion parameter might be more suitable due to possible overfitting.

Our analysis also reveals the presence of excessive zeros suggesting the existence of the process
generating only zero values (i.e. split transactions) alongside the process generating regular dura-
tions. According to Table 5, the average probability of excessive zeros π in the zero-inflated negative
binomial model ranges between 53.27 percent (MCD) and 74.88 percent (ASML). The presence of
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Table 6: The difference in the Akaike information criterion (AIC) and the Diebold–Mariano (DM)
statistic for the models based on the Poisson distribution (P), the geometric distribution (G), the
negative binomial distribution (NB), the zero-inflated Poisson distribution (ZIP), the zero-inflated
geometric distribution (ZIG), and the zero-inflated negative binomial distribution (ZINB).

EURONEXT NYSE NASDAQ

Distribution Crit. INGA ASML MCD IBM CSCO MSFT

P / ZINB AIC 267461915.62 280418352.77 138404692.48 148394239.86 142150126.37 124884854.32
DM -235.37 -269.95 -384.02 -436.68 -361.32 -945.72

G / ZINB AIC 2995721.03 3894926.03 3283604.41 4270769.74 6100642.18 10641774.31
DM -689.62 -981.64 -793.38 -953.95 -668.61 -1272.63

NB / ZINB AIC 45891.96 58214.58 118521.51 153740.09 279306.75 617624.25
DM -119.12 -138.71 -221.39 -261.55 -287.93 -469.99

ZIP / ZINB AIC 104329981.44 100918549.37 60299913.57 58956197.68 58305592.35 43332973.41
DM -170.40 -210.26 -291.16 -311.60 -336.45 -617.43

ZIG / ZINB AIC 49991.79 50910.51 84210.77 77231.38 122581.75 112468.26
DM -80.79 -97.10 -108.19 -113.01 -123.58 -144.40

excessive zeros is further supported by the better in-sample and out-of-sample fit for the zero-inflated
distributions as reported in Table 6. Table 7 shows that it is also suitable to let the zero-inflation
parameter be time-varying as this increases the in-sample and out-of-sample fit, particularly for the
more traded stocks MCD, IBM, CSCO, and MSFT. This is in line with the mean probabilities of zero
value when the observation is either zero or positive reported in Table 5.

5.5 Degree of Rounding

The choice of rounding to hundredths of a second, i.e. centiseconds, is motivated by Figure 1 which
shows that the majority of excessive close-to-zero durations is concentrated in values 0 and 0.001 and
the occurrence of larger values quickly decreases. In this section, we study the impact of different
degrees of rounding and whether this choice is appropriate. Again, we use the difference in the AIC
to assess the in-sample fit and the DM statistic to assess the out-of-sample fit. When comparing
two models with different degrees of rounding, we compute the log-likelihood (which is the base
for both AIC and DM) with respect to the rounding to fewer decimal places. A probability under
the rounding to fewer decimal places is then the sum of the corresponding probabilities under the
rounding to more decimal places. We consider rounding to zero decimal places (seconds), one decimal
place (deciseconds), two decimal places (centiseconds), and three decimal places (milliseconds), i.e.
the original data.

Table 8 shows the impact of increasing rounding. The rounding to centiseconds is clearly preferred
over no rounding, i.e. precision to milliseconds. This is caused by the inability of the ZIACD model
on milliseconds to account for an excessive probability of durations between 0.001 and 0.009 seconds;
mostly, however, 0.001 seconds. The choice between the rounding to centiseconds and deciseconds
differs for the individual stocks. For the INGA and AMSL stocks traded on the EURONEXT ex-
change, the model on deciseconds performs better. The difference in the AIC and the value of the
DM statistic suggesting deciseconds are significant but smaller compared to the other values in Table
8. To keep the reported results simple, we stick with the model on centiseconds. For the more trade
stocks MCD, IBM, CSCO, and MSFT, the model on centiseconds clearly outperforms the model on
deciseconds. Finally, deciseconds are preferred over seconds for all stocks.

6:16



Table 7: The difference in the Akaike information criterion (AIC) and the Diebold–Mariano (DM)
statistic for the zero-inflated negative binomial model with all parameters static (SSS), dynamic µ
(DSS), dynamic µ, α (DDS), dynamic µ, π (DSD), and dynamic µ, α, π (DDD).

EURONEXT NYSE NASDAQ

Dynamics Crit. INGA ASML MCD IBM CSCO MSFT

SSS / DDD AIC 21492.36 27667.68 264677.50 325382.37 839689.51 1780799.16
DM -86.74 -133.22 -302.72 -393.75 -425.24 -762.36

DSS / DDD AIC 8135.80 7612.61 219595.15 271386.43 742989.86 1447522.61
DM -57.16 -71.11 -274.29 -321.08 -396.20 -619.05

DDS / DDD AIC 5652.62 4831.46 86375.82 112311.74 212495.87 521863.12
DM -50.55 -56.63 -177.80 -208.29 -231.05 -420.17

DSD / DDD AIC 1617.11 1953.18 7286.14 5069.21 6614.27 9203.83
DM -13.99 -24.88 -32.19 -35.19 -24.04 -32.57

Table 8: The difference in the Akaike information criterion (AIC) and the Diebold–Mariano (DM)
statistic for the zero-inflated negative binomial model based on data rounded to milliseconds (ms),
centiseconds (cs), deciseconds (ds), and seconds (s).

EURONEXT NYSE NASDAQ

Precision Crit. INGA ASML MCD IBM CSCO MSFT

ms / cs AIC 28004.18 37387.09 49082.83 58914.43 42215.78 178862.15
DM -74.72 -102.18 -101.74 -97.79 -32.09 -114.94

cs / ds AIC 3085.80 4326.46 -18588.85 -28803.35 -66676.58 -233072.75
DM -11.59 -29.46 47.73 76.70 87.26 218.46

ds / s AIC -1071.15 -1021.23 -34331.20 -42690.00 -70647.10 -34868.11
DM 10.75 12.33 87.23 97.62 105.13 66.52
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Table 9: The difference in the Akaike information criterion (AIC) and the Diebold–Mariano (DM)
statistic for the generalized gamma model (GG) with zeros discarded (Discard) or truncated (Trunc)
and the zero-inflated negative binomial model (ZINB).

EURONEXT NYSE NASDAQ

Model Crit. INGA ASML MCD IBM CSCO MSFT

GG Discard / ZINB Discard AIC 14808.54 18250.42 24298.98 32947.27 69568.44 143388.69
DM -41.41 -48.97 -72.66 -81.80 -103.98 -143.54

GG Trunc to 0.001 / ZINB AIC 268465.60 356891.51 360261.19 469852.61 730365.26 1358026.51
DM -293.92 -385.96 -342.79 -387.75 -258.53 -548.24

GG Trunc to 0.0005 / ZINB AIC 218050.18 302587.56 325396.64 406946.28 572429.68 1111215.05
DM -245.36 -337.90 -203.65 -342.76 -365.74 -479.62

GG Trunc to 0.0001 / ZINB AIC 174616.63 227173.46 283440.84 329196.87 462917.51 1073765.49
DM -224.66 -271.87 -154.87 -299.34 -191.52 -461.16

5.6 Comparison to Continuous Models

We compare the proposed discrete ZIACD model with continuous models based on the generalized
gamma distribution (see Technical Appendix C) with GAS dynamics. The generalized gamma dis-
tribution contains the exponential, Weibull, and gamma distributions as special cases and belongs
to the family of the generalized F distribution. The use of the generalized gamma distribution in
ACD models was proposed by Lunde (1999). Both Bauwens et al. (2004) and Fernandes and Gram-
mig (2005) found that the generalized gamma distribution is more adequate than the exponential,
Weibull, and Burr distributions. The study Xu (2013) shows that the log-normal distribution does
not outperform the generalized gamma distribution either. For these reasons, the generalized gamma
distribution is our main candidate for the competing continuous distribution. In our comparison, we
do not consider the generalized F distribution as it has four parameters and in most cases of financial
durations reduces to the generalized gamma distribution as discussed by Hautsch (2003) and Hautsch
(2012). We also do not consider the Birnbaum–Saunders distribution as it models the median instead
of the scale parameter and therefore does not strictly belong to the traditional ACD class. Models
based on continuous distributions must address the issue of zero durations. We consider two ways of
dealing with zero values in continuous models – discarding them and truncating them to a given value.
Furthermore, we consider three values for truncating – 0.001, 0.0005, and 0.0001 seconds. Bauwens
(2006) used truncation to the half of the smallest increment, which is 0.0005 seconds in our case.
Similarly to the previous section, we compute log-likelihood on a discrete grid of centiseconds. In the
case of discarding zeros, we compare the generalized gamma model with the zero-inflated negative
binomial model that is also estimated without zero values.

Figure 4 demonstrates the unsuitability of the approach discarding zeros. Similarly to Figure 2,
the generalized gamma model is not able to capture unusually increased occurrence of 0.06 seconds
(for the INGA and ASML stocks) and 0.10 seconds (for all stocks). A crucial problem, however, is
significantly underestimated probabilities in the wider vicinity of zero. In the case of the zero value
itself, the difference in probability reaches -10.17 percent for the AMSL stock. Note that Figure 4
has much larger scale than Figure 2. Table 9 then confirms the superiority of the ZIACD model over
the continuous alternatives in terms of the difference in the AIC and the DM statistic. Concerning
the treatment of zero values, we can see that it is better to truncate zeros to smaller values but it is
even better to just discard them. Either way, the results imply that the loss of decimal places in the
proposed ZIACD model is of much less importance than the incorrect treatment of zero values in the
continuous models.
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Figure 4: The in-sample and out-of-sample difference between the conditional probabilities given by
the generalized gamma model with discarded zeros and the unconditional distribution of observations.

6 Discussion

6.1 Discreteness of Data

As mentioned above, our paper studies data with high-precision timestamps. Although it is nowadays
quite common that exchanges record transactions with precision to one millisecond or higher, one
can encounter preprocessed datasets with precision to one second due to their easier readability. In
some cases, this can even be the only dataset provided by the exchange to the public3. For these
low-precision data, it is more natural to use a discrete model such as ours rather than a continuous
model.

To our knowledge, Grimshaw et al. (2005) is the only paper addressing the issue of rounding in
financial durations analysis. They found that ignoring the discreteness of data leads to a distortion of
time-dependence tests in financial durations. More loosely related, Schneeweiss et al. (2010) reviewed
the bias-inducing effects of rounding. Tricker (1984) and Taraldsen (2011) explored the effects of
rounding on the exponential distribution while Tricker (1992) dealt with the gamma distribution.
Zhang et al. (2010) and Li and Bai (2011) found that the rounding errors in autoregressive processes
can further accumulate making continuous models unreliable.

Let us conduct the following experiment to explore the influence of rounding on the estimation of
GAS models based on discrete and continuous distributions. We simulate 10000 observations using a
dynamic model based on the generalized gamma distribution with the time-varying scale parameter
following the GAS dynamics given by c = 0.10, a = 0.10, b = 0.90 and the two static shape parameters
θ = 0.50 and φ = 0.50. The unconditional mean is then approximately equal to 2.05. Then, we round
down the observations to a given number of decimal places. Finally, using rounded observations, we
estimate GAS models based on the generalized gamma distribution with zero values (created by the

3For example, the Prague Stock Exchange currently records times of transactions with precision to one millisecond
and distributes millisecond data to its members and external agencies. However, data provided to individuals have a
precision of one second only.
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rounding) either discarded or truncated as well as the GAS model based on the negative binomial
distribution. Note that we do not consider zero inflation in the negative binomial distribution as
there are no excessive zeros generated by a different process. The simulation is repeated 1000 times.
Figure 5 shows the bias of the unconditional mean of the estimated models with data rounded down
to decimal places ranging from 3 up to 6. The negative binomial model, although with incorrectly
specified distribution, has the smallest bias. On the other hand, the generalized gamma model
with either treatment of zero values has a much higher bias which increases with rounding to fewer
decimal places. This is caused by an increased occurrence of discarded or truncated zero values
which significantly distorts the continuous distribution. This experiment demonstrates that it is
more appropriate to use a distribution that is able to handle zero values, even though it is not the
true distribution of the data generating process.

6.2 Other Mixture Models

On a final note, we discuss some potential alternatives to our proposed model that also utilize a
mixture of two processes to capture unrelated and split transactions.

One possibility is to consider a hurdle model based on a continuous distribution with a point
mass at zero. For example, the dynamic zero-augmented model of Hautsch et al. (2014)4 or the
dynamic censoring model of Harvey and Ito (2020) could be used. Hautsch et al. (2014) proposed a
multiplicative error model based on a zero-augmented distribution and applied it to high-frequency
time series of cumulated trading volumes. Harvey and Ito (2020) proposed a dynamic model with
a left-shifted distribution for non-zero observations and censored negative values and applied it to
daily rainfalls in northern Australia. Note that similarly to us, Harvey and Ito (2020) utilized the
GAS framework. There are, however, two issues with this approach. Without any transformation of
data, both these models would require split transactions to result in exactly zero durations, which
is not realistic as shown in Section 1. Of course, one could follow our approach and round down
durations below a given threshold, e.g. one hundredth of a second, to zero. Unlike in our approach,
only durations below the threshold would be rounded and durations above would be kept continuous.
The second issue is that hurdle models assume that one process generates zero values while the other

4The use of zero-augmented models for duration modeling was suggested by Prof. T. V. Ramanathan during the
3rd Conference and Workshop on Statistical Methods in Finance (Chennai, December 16–19, 2017).
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process generates positive values only. In other words, it would not be possible to determine the ratio
between zeros caused by unrelated and split transactions as all zeros would be attributed solely to
split transactions. For this reason, our proposed model is superior.

A more complex approach is to assume a non-trivial process for split transactions. Both processes
would then generate positive values and at least one of them would also generate zero values. This
could be accomplished within either a continuous or discrete framework depending on the underlying
data. The choice of a continuous distribution for the process governing split transactions would,
however, be limited as zero is required to lie in its support. An exponential distribution would be an
obvious starting point here. Note that the appropriately chosen process governing split transactions
would not require any transformation of data, which would be a major benefit. On the other hand,
the potential complexity of such a model could be a drawback. The ACD model based on a mixture
of two non-trivial processes is the direction of our future research.

7 Conclusion

We analyze trade durations with split transactions manifesting themselves as zero and close-to-zero
values. We round down durations to hundredths of a second and approach this problem within a
discrete framework. To capture excessive zero values and autocorrelation structure in durations, we
propose a model based on the zero-inflated negative binomial distribution with score dynamics for the
time-varying parameters. We label this model the zero-inflated autoregressive conditional duration
model or ZIACD model for short. The paper has three main contributions.

1. We extend the theory of GAS models for the zero-inflated negative binomial distribution with
time-varying scale parameter. Specifically, we establish the invertibility of the score filter. We
also derive sufficient conditions for the consistency and asymptotic normality of the maximum
likelihood of the model parameters.

2. We argue that zero durations should not be removed from the data as they can correspond not
only to split transactions but to unrelated transactions as well. Even more, split transactions
can generate not only zero values but positive values as well. In the empirical study, the
proposed model identifies that split transactions form between 92 and 98 percent of durations
smaller than 0.01 seconds. Furthermore, between 53 and 75 percent of all durations correspond
to split transactions.

3. We compare the proposed discrete approach with the commonly used continuous approach. We
find that even when durations are recorded with high precision suitable for continuous modeling,
the proposed discrete model estimated from rounded durations outperforms traditional contin-
uous models based on unrounded data due to its correct treatment of zero and close-to-zero
values.

Our proposed model can be utilized in joint modeling of prices and durations. It also allows studying
the trading process from the market microstructure perspective. Future research should focus on
more complex mixture models, whether in discrete or continuous frameworks, that do not require
any transformation of data. However, it should be noted, that these complex models might lose the
benefits of our ZIACD model such as simple implementability in practice and verifiability of sufficient
conditions for asymptotic properties of the estimator.
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A Proofs of Asymptotic Properties

Proof of Proposition 1:
Following Straumann and Mikosch (2006) and Blasques et al. (2022), we obtain invertibility by

verifying that the conditions of Theorem 3.1 of Bougerol (1993) hold uniformly on a non-empty set
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Θ, for any initialization f̂1(θ) In particular, we note that a ln+ bounded moment holds at i = 1 since
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where the three inequalities follow by norm sub-additivity, as well as the ln+ sub-additive and sub-
multiplicative inequalities in Lemma 2.2 of Straumann and Mikosch (2006), and the last bound follows
since c, b, a are strictly positive and lie on the compact Θ and f̂1(θ) is a given real number. We also
have that E
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<∞ as
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where Exi>0 denotes the conditional expectation Exi>0[·] = E[·|xi>0] and
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which holds as the parameter vector θ lies on the compact set Θ, and f̂1 is a given point in R, and

Exi>0

[
ln+ sup

θ∈Θ

∣∣∣s(xi, f̂1, θ)
∣∣∣
]
= Ex1>0

[
ln+ sup

θ∈Θ

∣∣∣x1 − exp(f̂1)(α exp(f̂1) + 1)−1
∣∣∣
]

≤ Ex1>0

[
ln+ sup

θ∈Θ

∣∣∣x1 − exp(f̂1)
∣∣∣
]

≤ 2 ln(2) + Ex1>0

[
ln+ |x1|

]
+ ln+ | exp(f̂1)|

<∞,

6:28



since x1 has a logarithmic moment, Θ is compact and f̂1 ∈ R.
Finally, the contraction condition of Bougerol (1993) is satisfied uniformly in θ ∈ Θ since
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Proof of Lemma 1:
This proof follows that of Blasques et al. (2022, Theorem 4.6). The existence and measurability

of θ̂n is obtained through an application of White (1994, Theorem 2.11) or Gallant and White (1988,
Lemma 2.1, Theorem 2.2), as Θ is compact and the log likelihood is continuous in θ and measurable
in xi. The consistency of the ML estimator, θ̂n(f̂1)

as→ θ0, is obtained by White (1994, Theorem 3.4)
or Gallant and White (1988, Theorem 3.3). Below, we note that we satisfy the sufficient conditions
of uniform convergence of the log likelihood function

sup
θ∈Θ

|L̂n(θ)− L∞(θ)| as→ 0 ∀ f̂1 ∈ F as n→ ∞,

and the identifiable uniqueness of the maximizer θ0 ∈ Θ introduced in White (1994),

sup
θ:∥θ−θ0∥>ϵ

L∞(θ) < L∞(θ0) ∀ ϵ > 0.

The uniform convergence of the criterion is obtained since, by norm sub-additivity, we can split the
log likelihood as follows

sup
θ∈Θ

|L̂n(θ)− L∞(θ)| ≤ sup
θ∈Θ

|L̂n(θ)− Ln(θ)|+ sup
θ∈Θ

|Ln(θ)− L∞(θ)|. (17)

The first term on the right-hand-side of (17) vanishes if |l̂i(θ)− li(θ)| as→ 0 since

|L̂n(θ)− Ln(θ)| ≤
1

n

n∑
|l̂i(θ)− li(θ)| as→ 0,

and we have that

sup
θ∈Θ

|l̂i(θ)− li(θ)| ≤ sup
θ∈Θ

sup
f

|∇(xi, f, θ)| · sup
θ∈Θ

|f̂i(θ)− fi(θ)| as→ 0 ∀ f̂1 ∈ F as n→ ∞,

where supθ∈Θ |f̂i(θ)−fi(θ)| as→ 0 follows from the invertibility of the filter (proved in Proposition 1) and
the product vanishes by the bounded logarithmic moment of the score E[ln+ supf |∇(xi, f)|] <∞ (see
Lemma 2.1 in Straumann and Mikosch 2006). The logarithmic moment E[ln+ supf |∇(xi, f)|] < ∞
follows as

E
[
ln+ |s(0, f̂i)|

]
= E


ln+

∣∣∣∣∣∣
exp(f̂i)(π − 1)

(α exp(f̂i) + 1)
(
1 + π(α exp(f̂i) + 1)α−1 − π

)

∣∣∣∣∣∣


 <∞,

Exi>0

[
ln+ |s(xi, f̂i)|

]
=

∣∣∣∣∣
xi − exp(f̂i)

α exp(f̂i) + 1

∣∣∣∣∣ <∞ for xi > 0.

Note that since we use unit scaling in Lemma 1, we have that ∇(xi, f) = s∇(xi, f). The uniform
convergence of the second term on the right-hand-side of (17)

sup
θ∈Θ

|Ln(θ)− L∞(θ)| as→ 0 ∀ f̂1 ∈ F as n→ ∞,

follows by application of the ergodic theorem for separable Banach spaces in Rao (1962). We note that
the {Ln(·)}t∈N has strictly stationary and ergodic elements as it depends on the limit strictly station-
ary and ergodic filter taking values in the Banach space of continuous functions C(Θ,R) equipped with
sup norm. We also note that Ln(·) has one bounded moment since E[Ln(θ)] ≤ 1

n

∑n E[li(θ)] < ∞.
In particular, the bounded moment for the log likelihood holds trivially if the data has a bounded
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moment E[xi] <∞ since ln ℓi(xi, θ) is bounded in µi and bounded by a linear function in xi,

ℓi(0, θ) = lnP[Xi = 0|f̂i(θ), θ]

= ln


π + (1− π)

(
α−1

α−1 + exp(f̂i(θ))

)α−1

 ,

ℓi(xi, θ) = lnP[Xi = xi|f̂i(θ), θ]

= ln(1− π) + ln
Γ(xi + α−1)

Γ(xi + 1)Γ(α−1)

+
1

α
ln

(
α−1

α−1 + exp(f̂i(θ))

)
+ xi ln

(
exp(f̂i(θ))

α−1 + exp(f̂i(θ))

)
for xi > 0.

The identifiable uniqueness (see e.g. White, 1994) follows from the compactness of Θ, the assumed
uniqueness of θ0, and the continuity of the limit likelihood function E[ℓi(θ)] in θ ∈ Θ.

Proof of Lemma 2:
This proof follows Blasques et al. (2022, Theorem 4.16). In particular, we obtain the asymp-

totic normality using the usual expansion argument found e.g. in White (1994, Theorem 6.2) by
establishing:

(i) The consistency of θ̂n
as→ θ0 ∈ int(Θ), which follows immediately by Lemma 1.

(ii) The as twice continuous differentiability of Ln(θ, f̂1) in θ ∈ Θ, which holds trivially for our
zero-inflated score model.

(iii) The asymptotic normality of the score, which can be shown to hold by verifying that,

√
n
∂Ln(θ0)

∂θ

d→ N(0, I(θ0)
)

as n→ ∞, (18)

and
√
n
∣∣∣∂L̂(θ0)

∂θ
− ∂L(θ0)

∂θ

∣∣∣ as→ 0 as n→ ∞. (19)

The asymptotic normality in (18) is obtained by application of a central limit theorem for
martingale difference sequences to the score, after noting that the score

∂Ln(θ0)

∂θ
=

1

n

n∑(
∂ℓi(xi, θ0)

∂θ
+
∂ℓi(xi, θ0)

∂fi

∂fi(θ0)

∂θ

)
.

has two bounded moments. In particular,

E

[∥∥∥∥
∂Ln(θ0)

∂θ

∥∥∥∥
2
]
≤ E

[∥∥∥∥
∂ℓi(xi, θ0)

∂θ

∥∥∥∥
2
]
+ E

[∥∥∥∥
∂ℓi(xi, θ0)

∂fi

∂fi(θ0)

∂θ

∥∥∥∥
2
]
<∞,

where the bounds

E

[∥∥∥∥
∂ℓi(xi, θ0)

∂θ

∥∥∥∥
2
]
<∞ and E

[∥∥∥∥
∂ℓi(xi, θ0)

∂fi

∂fi(θ0)

∂θ

∥∥∥∥
2
]
<∞,

hold, for example, under the assumption that

E

[∥∥∥∥
∂ℓi(xi, θ0)

∂fi

∥∥∥∥
4
]
<∞ and E

[∥∥∥∥
∂ℓi(xi, θ0)

∂θ

∥∥∥∥
4
]
<∞;

by a generalized Holder’s inequality as used e.g. in Blasques et al. (2022). For the negative
binomial model it is easy to see for example that the four bounded moments for score term
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∂ℓi(xi, θ0)/∂fi can be obtained if the data has four bounded moments, E|xi|4 < ∞, by noting
that

E

[
sup
θ∈Θ

∥s(0, f̂i, θ)∥4
]
≤ sup

µ
sup
θ∈Θ

∥s(0, f̂i, θ)∥4

= sup
µ

sup
θ∈Θ

∣∣∣∣∣(π − 1)
exp(f̂i)

α exp(f̂i) + 1

(
1 + π(α exp(f̂i) + 1)α

−1 − π
)−1

∣∣∣∣∣

4

<∞,

since s(0, f̂i, θ) is uniformly bounded in f̂i. Furthermore, by application of the so-called cn-
inequality, there exists a finite constant k such that,

Exi>0

[
sup
θ∈Θ

|s(xi, f̂i, θ)|4
]
= Exi>0

[
sup
θ∈Θ

∣∣∣xi − exp(f̂i)(α exp(f̂i) + 1)−1
∣∣∣
4
]

≤ k sup
θ∈Θ

1

α
Exi>0[x

4
i ] + k|α−1|4

<∞.

Additionally, following the argument of Blasques et al. (2022, Theorem 4.14) and Straumann
and Mikosch (2006, Lemma 2.1), the as convergence in (19) follows by the invertibility of
the filter and its derivatives. The invertibility of the first derivative process can be verified
by applying Theorem 2.10 in Straumann and Mikosch (2006). This theorem is analogue to
Theorem 3.1 of Bougerol (1993), also used in the proof of Proposition 1 above, but it applies
to perturbed stochastic sequences. For example, the updating equation for derivative process
∂fi/∂c = ∂f̂i/∂c takes the form

∂f̂i+1

∂c
= 1 + b

∂f̂i
∂c

+
∂s(xi, f̂i)

∂f̂i

∂f̂i
∂c

= 1 +

(
b+

∂s(xi, f̂i)

∂f̂i

)
∂f̂i
∂c

.

Hence, by application of Theorem 2.10 in Straumann and Mikosch (2006), the invertibility of this
filter is ensured by (a) the invertibility of the filter {f̂i}i∈N (shown in Proposition 1); (b) the con-
traction condition E[ln |b+ ∂s(xi, f̂i)/∂f̂i|] < 0; and a logarithmic moment for ∂2s(xi, f̂i)/∂f̂2i .

(iv) The uniform convergence of the Hessian, is obtained through the invertibility of the filter and its
derivative processes. In particular, a sufficient condition is for the first and second derivatives
of the filtering process to converge almost surely, exponentially fast, to a limit stationary and
ergodic sequence,

∥∥∥∥∥
∂f̂i(θ0)

∂θ
− ∂fi(θ0)

∂θ

∥∥∥∥∥
eas→ 0 and sup

θ∈Θ

∥∥∥∥∥
∂2f̂i(θ)

∂θ∂θ′
− ∂2fi(θ)

∂θ∂θ′

∥∥∥∥∥
eas→ 0 as i→ ∞,

with four bounded moments

E

[∥∥∥∥
∂fi(θ0)

∂θ

∥∥∥∥
4
]
<∞ and E

[
sup
θ∈Θ

∥∥∥∥
∂2fi(θ)

∂θ∂θ′

∥∥∥∥
4
]
<∞.

and to have logarithmic moments for cross derivatives,

E

[
sup
θ∈Θ

∥∥∥∥
∂2ℓi(xi, θ)

∂fi∂θ′

∥∥∥∥
]
<∞, E

[
sup
θ∈Θ

∥∥∥∥
∂2ℓi(xi, θ)

∂f2i

∥∥∥∥
]
<∞ and E

[
sup
θ∈Θ

∥∥∥∥
∂2ℓi(xi, θ)

∂θ∂θ′

∥∥∥∥
]
<∞;

and also for the third-order derivatives of the log likelihood to have a uniform logarithmic
bounded moment,

E

[
ln+ sup

θ∈Θ

∥∥∥∥
∂3ℓi(xi, θ0)

∂f2i ∂θ
′

∥∥∥∥
]
<∞, E

[
ln+ sup

θ∈Θ

∥∥∥∥
∂3ℓi(xi, θ0)

∂f3i

∥∥∥∥
]
<∞.
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and E

[
ln+ sup

θ∈Θ

∥∥∥∥
∂3ℓi(xi, θ0)

∂θ∂θ′∂f

∥∥∥∥
]
<∞;

Then by application of the ergodic theorem for separable Banach spaces in Rao (1962) to the
limit Hessian (see also Blasques et al. 2022 and Straumann and Mikosch 2006, Theorem 2.7 for
additional details), we have,

sup
θ∈Θ

∥∥∥∥
∂2Ln(θ)

∂θ∂θ′
− E

[
∂2ℓi(θ)

∂θ∂θ′

]∥∥∥∥
as→ 0 as n→ ∞. (20)

(v) The non-singularity of the limit L′′
∞(θ) = E[ℓ′′i (θ)] = I(θ) follows by the uniqueness of θ0 and

the independence of derivative processes (Straumann and Mikosch 2006, Theorem 2.7).

B Model Evaluation

It is well know that ranking models based on their expected log-likelihood E[ℓi(θ0)] evaluated at the
best (pseudo-true) parameter θ0 is equivalent to model selection based on minimizing the expected
Kullback-Leibler divergence between the true distribution of the data and the model-implied distri-
bution. The sample log-likelihood is however an asymptotically biased estimator of the expected log
likelihood. Under restrictive conditions, Akaike (1973, 1974) showed that the bias is approximately
given by the number of parameters of the model dim(θ). Since then, the AIC has been shown to
consistently rank models according to the Kullback-Leibler divergence under considerably weaker
conditions (Sin and White 1996; Konishi and Kitagawa 2008). Unfortunately, model specification
and identification issues still exert a strong influence over the performance of in-sample information
criteria.

For this reason, it could be interesting to consider criteria based on a validation sample. Lemma 3
highlights that log-likelihood based on an independent validation sample of m observations, nL̂m(θ̂n),
is asymptotically unbiased for nE[ℓi(θ0)]. A proof can be found in Andrée et al. (2017)5.

Lemma 3. Let the conditions of Lemma 1 hold. Then limn,m→∞ E
[
nL̂m(θ̂n)− nE[ℓi(θ0)]

]
= 0.

Lemma 4 uses a Diebold-Mariano test statistic (Diebold and Mariano, 1995) to test for differences
in log-likelihoods across different models obtained from the validation sample (see Andrée et al., 2017,
for a proof). This test is also known as a logarithmic scoring rule, see e.g. Diks et al. (2011); Amisano
and Giacomini (2007); Bao et al. (2007). Given two models, A and B, let ℓ̃Ai (θ

A
0 ) and ℓ̃Bi (θ

B
0 ) denote

their respective log-likelihood contributions at a certain time i (in the validation sample) evaluated
at each model’s pseudo-true parameter. Define the log-likelihood difference

DA,B
i := ℓ̃Ai (θ

A
0 )− ℓ̃Bi (θ

B
0 ).

Finally, define the Diebold-Mariano test statistic

DMm,n =
√
m
µA,BD

σA,BD

, µA,BD =
1

m

n+m∑

i=n+1

DA,B
i , σA,BD =

√√√√ 1

m− 1

n+m∑

i=n+1

(
DA,B
i − µA,BD

)2
.

Lemma 4 (Validation-Sample Test). Let Lemma 1 hold for both models A and B, such that θ̂An
as→ θA0

and θ̂Bn
as→ θB0 as n→ ∞. Then we have that

DMm,n
d→ N (0, 1) as n,m→ ∞,

under the null hypothesis H0 : E[DA,B
m ] = 0, where σA,BD is a consistent estimator of the standard

deviation of DA,B
m . If E[DA,B

m ] > 0 then DMm,n → ∞ as n,m → ∞. Finally, if E[DA,B
m ] < 0, then

DMm,n → −∞.
5For time-series data with fading memory, a burn-in period between the estimation and the validation samples can

be the approximate independence between the two samples. Proofs then rely on expanding estimation, burn-in and
validation samples.
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C Generalized Gamma Distribution

The generalized gamma distribution is a continuous probability distribution and a three-parameter
generalization of the two-parameter gamma distribution (Stacy, 1962). It also contains the exponen-
tial distribution and the Weibull distribution as special cases. It uses the scale parameter β and two
shape parameters θ and φ. The probability density function is

p(x|β, θ, φ) = 1

Γ (θ)

φ

β

(
x

β

)θφ−1

e
−
(

x
β

)φ

for x ∈ (0,∞).

The expected value and variance is

E[X] = β
Γ
(
θ + φ−1

)

Γ (θ)
,

var[X] = β2
Γ
(
θ + 2φ−1

)

Γ (θ)
−
(
β
Γ
(
θ + φ−1

)

Γ (θ)

)2

.

The score vector is

∇(x;β, θ, φ) =




φβ−1 (xφβ−φ − θ)
φ ln

(
xβ−1

)
− ψ0(θ)

θ ln
(
xβ−1

)
− xφβ−φ ln

(
xβ−1

)
+ φ−1


 for x ∈ (0,∞).

Special cases of the generalized gamma distribution include the gamma distribution for φ = 1, the
Weibull distribution for θ = 1 and the exponential distribution for θ = 1 and φ = 1.
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Abstract: Arrivals in a queueing system are typically assumed to be independent and exponentially
distributed. Our analysis of an online bookshop, however, shows that there is an autocorrelation
structure. First, we adjust the inter-arrival times for diurnal and seasonal patterns. Second, we
model adjusted inter-arrival times by the generalized autoregressive score (GAS) model based
on the generalized gamma distribution in the spirit of the autoregressive conditional duration
(ACD) models. Third, in a simulation study, we investigate the effects of the dynamic arrival
model on the number of customers, the busy period, and the response time in queueing systems
with single and multiple servers. We find that ignoring the autocorrelation structure leads to
significantly underestimated performance measures and consequently suboptimal decisions. The
proposed approach serves as a general methodology for the treatment of arrivals clustering in practice.

Keywords: Inter-Arrival Times, Queueing Theory, Autoregressive Conditional Duration Model,
Generalized Autoregressive Score Model, Retail Business.
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1 Introduction

In various applications of operations research, it is undeniable that the characteristics of a model
evolve over time. The parameters of interest can depend on the time of day and season as well as on
their past values and other past indicators. In the present paper, we focus on the latter dependency
in arrivals to queueing systems from the perspective of the autoregressive conditional duration models
with the generalized autoregressive score dynamics.

Many standard queueing systems consider inter-arrival times to be independent, for the sake
of analytical tractability. Some studies, however, explicitly consider autocorrelation and model ar-
rivals using the Markovian arrival process (MAP) (see, e.g., Adan and Kulkarni, 2003; Buchholz
and Kriege, 2017; Manafzadeh Dizbin and Tan, 2019), the Markov renewal process (see, e.g., Tin,
1985; Patuwo et al., 1993; Szekli et al., 1994), the moving average process (see, e.g., Finch, 1963;
Finch and Pearce, 1965; Pearce, 1967) or the discrete autoregressive process (see, e.g., Hwang and
Sohraby, 2003; Kamoun, 2006; Miao and Lee, 2013). Hwang and Sohraby (2003) argue that time
series models with few parameters are more suitable in practice than the MAP models, which might
be overparametrized. Simulation studies investigating the autocorrelation in arrivals include Livny
et al. (1993), Resnick and Samorodnitsky (1997), Altiok and Melamed (2001), Nielsen (2007) and
Civelek et al. (2009). Overall, these studies show that ignoring the autocorrelation structure in a
queueing system, if one is present, leads to biased performance measures.

Arrival processes are also extensively studied in the financial high-frequency literature. In this
field, the duration analysis deals with the modeling of the times between successive transactions
(trade durations), times until the price reaches a certain level (price durations), and times until
a certain volume is traded (volume durations). Typically, the autoregressive conditional duration

7:1



(ACD) model of Engle and Russell (1998) is used. Its dynamics are analogous to the generalized
autoregressive conditional heteroskedasticity (GARCH) model of Bollerslev (1986). In its basic version,
the ACD model is based on the exponential distribution, but many other distributions are considered
in the literature as well. Notably, Lunde (1999) introduces the generalized gamma distribution to
the ACD model. Bauwens et al. (2004) and Fernandes and Grammig (2005) find that in financial
applications, the generalized gamma distribution is more adequate than the exponential, Weibull, and
Burr distributions. Hautsch (2003) further finds that the four-parameter generalized F -distribution
reduces to the three-parameter generalized gamma distribution in most cases of financial durations.
For a survey of financial duration analysis, see Pacurar (2008) and Saranjeet and Ramanathan (2018).

A modern approach to time series modeling is the general autoregressive score (GAS) model of
Creal et al. (2013), also known as the dynamic conditional score (DCS) model by Harvey (2013). The
GAS model is an observation-driven model providing a general framework for modeling time-varying
parameters of any underlying probability distribution. It captures the dynamics of time-varying
parameters by the autoregressive term and the score of the conditional density function using the
shape of the density function. The theoretical properties of the GAS models together with their
estimation by the maximum likelihood method are investigated, e.g., by Blasques et al. (2014) and
Blasques et al. (2018). The empirical performance of the GAS models is studied, e.g., by Koopman
et al. (2016) and Blazsek and Licht (2020). So far, there have been over 200 papers devoted to
numerous models belonging to the GAS family, with various applications, see www.gasmodel.com for
a comprehensive list.

The class of ACD models and the class of GAS models overlap. In the case of the exponential
distribution, the ACD model is equivalent to the GAS model (see Creal et al., 2013). For more complex
distributions, however, they tend to differ, as the ACD models are driven by the lagged observation
(or, when rewritten, the difference between the observation and the expected value) while the GAS
models are driven by the lagged score. In general, the GAS models are very often superior than
the alternatives (see, e.g., Blazsek and Villatoro, 2015; Koopman et al., 2016; Chen and Xu, 2019;
Gorgi et al., 2019; Harvey et al., 2019; Blazsek and Licht, 2020). Concerning the GAS models for
positive or non-negative values that are suitable for the duration analysis, Fonseca and Cribari-Neto
(2018) use the Birnbaum–Saunders distribution, Blasques et al. (2022) use the zero-inflated negative
binomial distribution as well as the generalized gamma distribution, and Harvey and Ito (2020) use
the generalized beta distribution as well as the generalized gamma distribution.

In the present paper, we put together three cornerstones – queueing theory, duration analysis,
and the GAS models – and demonstrate that they fit together perfectly. The literature has already
successfully incorporated GAS models with the duration analysis as discussed above, however, the
perspective from queueing theory is our novel contribution. We analyze the inter-arrival times between
orders from an online Czech bookshop. First, we adjust the arrivals for diurnal and seasonal patterns,
using the cubic spline. Second, we find that the adjusted inter-arrival times exhibit strong clustering
behavior: short inter-arrival times are usually followed by short times. To capture this autocorrelation,
we use the dynamic model based on the generalized gamma distribution with the GAS dynamics in
the spirit of the ACD models. We confirm that the proposed specification is quite suitable for the
observed data. Third, we investigate the effects of the proposed arrivals model on queueing systems
with single and multiple servers and exponential services. In a simulation study, we show that various
performance measures – the number of customers in the system, the busy period of servers, and the
response time – have higher mean and variance as well as heavier tails for the proposed dynamic
arrivals model than for the standard static model. Lastly, we illustrate how the misspecification of
the arrivals model can lead to suboptimal decisions.

The rest of this paper is structured as follows. In Section 2, we present the model based on the
generalized gamma distribution with the GAS dynamics for diurnally adjusted inter-arrival times. In
Section 3, we show that real data of a retail store exhibit an autocorrelation structure that is well
captured by our model. In Section 4, we investigate the impact of the proposed arrivals model on the
performance measures using simulations. We conclude the paper in Section 5.
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2 Dynamic Model for Arrivals

2.1 Diurnal and Seasonal Adjustment

Before we use the generalized autoregressive score (GAS) model to capture the autoregressive struc-
ture of inter-arrival times, we need to deal with diurnal, weekly, and monthly seasonality patterns.
To model the non-linear behavior of the diurnal and seasonal patterns and to properly adjust the
inter-arrival times, the cubic spline method is used. A cubic spline is a piecewise cubic polynomial
with continuous derivatives up to order two at each of the K fixed points, called knots, k = 1, . . . ,K.
Bruce and Bruce (2017) point out that the cubic spline method is often a superior approach to polyno-
mial regression since the polynomial regression often leads to undesirable wiggliness in the regression
equation.

To take into account the specifics of raw inter-arrival times {ỹi}ni=1, we define the cubic spline
with knots at {ξk}Kk=1 as

log ỹi = β0 + β1b1(xi) + β2b2(xi) + · · ·+ βK+3bK+3(xi) + γti + εi, (1)

where {βj}K+3
j=1 and γ are parameters to be estimated, εi is a disturbance term, ti is the trend variable,

{bj}K+3
j=1 are the basis functions, and xi is the time difference in minutes between the time-stamp of

the ith observation and the beginning of the week (Monday 00:00) to which the ith observation
belongs. Thus, {xi}ni=1 is able to capture both diurnal and intra-week patterns. The basis functions
are equal to (i) the variable xi, b1(xi) = xi; (ii) its square, b2(xi) = x2i ; (iii) its cube, b3(xi) = x3i ; and
(iv) truncated power functions, bk+3(xi) = max

{
0, (xi − ξk)

3
}
, k = 1, . . . ,K. The trend variable ti

is linear in time (not linear in observations), t1 = 0 and ti =
∑i−1

j=1 ỹj for i = 2, . . . , n, to take into
account any irregularity in the spacing of the observations. Moreover, the logarithmic transformation
of ỹ ensures the non-negativity of the adjusted inter-arrival times. Equidistant intervals are used for
identifying the knots, since intervals based on quantiles might lead to too few knots being allocated
to off-peak hours.

The regression parameters in (1) are estimated by the weighted least squares (WLS) method with
weights being the inter-arrival times. The WLS naturally compensates for the possibility that during
a particular time interval either a small number of long inter-arrival times or a higher number of
shorter inter-arrival times is observed, i.e., the number of observed inter-arrival times within a time
interval depends on the values of the inter-arrival times themselves. Unlike ordinary least squares,
this approach properly weights the inter-arrival times during hours that exhibit a small median but
a huge dispersion. Once the parameters are estimated, the diurnally and seasonally adjusted and
detrended inter-arrival times yi are set to exponentiated residuals from regression (1).

2.2 Generalized Gamma Distribution

Next, we assume that the adjusted inter-arrival times yi follow the generalized gamma distribution.
The generalized gamma distribution is a continuous probability distribution for non-negative vari-
ables proposed by Stacy (1962). It is a three-parameter generalization of the two-parameter gamma
distribution and contains the exponential distribution and the Weibull distribution as special cases.
The distribution has the scale parameter α and the shape parameters ψ > 0 and φ > 0. We use the
parametrization allowing for arbitrary values of α which is quite suitable for modeling its dynamics.
The probability density function is

f(y|α,ψ, φ) = 1

Γ (ψ)

φ

eα

( y
eα

)ψφ−1
e−(

y
eα )

φ

for y ∈ (0,∞), (2)

where Γ (·) is the gamma function. The expected value and variance is

E[Y ] = eα
Γ
(
ψ + φ−1

)

Γ (ψ)
,

var[Y ] = e2α
Γ
(
ψ + 2φ−1

)

Γ (ψ)
−
(
eα

Γ
(
ψ + φ−1

)

Γ (ψ)

)2

.

(3)
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The score for the parameter α is

∇α(y, α, ψ, φ) =
∂ log f(y|α,ψ, φ)

∂α
= φ

(
yφe−φα − ψ

)
for y ∈ (0,∞). (4)

The Fisher information for the parameter α is

Iα(α,ψ, φ) = E
[
∇α(y, α, ψ, φ)

2
∣∣α,ψ, φ

]
= ψφ2. (5)

Note that the Fisher information for α is not dependent on α itself. Special cases of the generalized
gamma distribution include the gamma distribution for φ = 1, the Weibull distribution for ψ = 1,
and the exponential distribution for ψ = 1 and φ = 1. The generalized gamma distribution itself is
contained in a larger family – the generalized F -distribution with four parameters.

2.3 Generalized Autoregressive Score Dynamics

We now consider the scale parameter to be time-varying. In the generalized autoregressive score
(GAS) framework of Creal et al. (2013), the time-varying parameters are linearly dependent on their
lagged values and the lagged values of the score of the conditional density. Typically, only the first
lag is used. In our case, the parameter αi follows the recursion

αi+1 = c+ bαi + a∇α(yi, αi, ψ, φ)

= c+ bαi + aφ
(
yφi e

−φαi − ψ
)
,

(6)

where c is the constant parameter, b is the autoregressive parameter, a is the score parameter, and
∇α(yi, αi, ψ, φ) is the score defined in (4). In the GAS framework, the score can be scaled by the
inverse of the Fisher information or the square of the inverse of the Fisher information. In our case,
however, both scaling functions, that based on the Fisher information and the unit scaling, lead to
the same model, since the Fisher information does not depend on αi. The score for a time-varying
parameter αi is the gradient of the log-likelihood with respect to αi and indicates how sensitive the
log-likelihood is to αi. In the GAS model, the score drives the time variation in αi based on the shape
of the generalized gamma density function.

Let θ = (c, b, a, ψ, φ) denote the vector of parameters in the model. We can estimate θ straight-
forwardly by the maximum likelihood method. The log-likelihood function is given by

ℓ(θ) = ln f(y0|α0, ψ, φ) +
n∑

i=1

ln f(yi|αi, ψ, φ), (7)

where f(·) is the generalized gamma density function given by (2). We deliberately set aside the first
term as the time-varying parameter αi needs to be initialized at i = 0. We set the value of α0 to the
long-term mean value c/(1− b). Subsequent values of αi, i = 1, . . . , n then follow recursion (6). The
parameter estimates θ̂ are obtained as the answer to the non-linear optimization problem

θ̂ ∈ max
θ
ℓ(θ). (8)

3 Empirical Evidence

3.1 Data Overview and Preparation

The data sample was obtained from the database of an online bookshop with one brick-and-mortar
location in Prague, Czechia. The data cover the period from June 8 to December 20, 2018, resulting
in 28 full weeks and 5 753 observations. The precision of the timestamp is one minute. Thus, zero
inter-arrival times might occur in the data due to two or more orders that arrive within one minute.
Since the generalized gamma distribution has strictly positive support, the zero inter-arrival times
are set to a small positive number. Bauwens (2006) replaces the zero inter-arrival times with a value
equal to one-half of the minimum positive inter-arrival time and argued that this is a more correct
approach than discarding them. Hence, all 81 zero inter-arrival times are set to 0.5 minutes.

7:4
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Figure 1: Intra-day view of raw inter-arrival times and their fitted diurnal/seasonal pattern.

3.2 Diurnal and Seasonal Patterns

The median of the raw inter-arrival times is 24 minutes and the mean is 49 minutes – more than
double, due to the long inter-arrival times at night (specifically, the hours between midnight and
9 AM, see Figure 1). The hours between 9 and 11 AM exhibit many short inter-arrival times and
several very long inter-arrival times, resulting in high dispersion (SD = 111.39). The rest of the rush
hours (until 5 PM) shows a similar inter-arrival time median but much lower dispersion (SD = 35.98).
Moreover, strong weekly and monthly seasonal patterns are observed. The highest order counts – and
consequently lower inter-arrival time values – occur at the beginning of the week and decrease until
Saturday, see Figure 2. On Sundays, order counts increase again and exhibit the highest dispersion.
During the summer months, the order counts are rather low – resulting in higher inter-arrival times
– and linearly increase until December.

To obtain the diurnally and seasonally adjusted and detrended inter-arrival times, the regression
equation (1) with a selected number of knots is estimated. In practice, the selection of a suitable
number of knots is an empirically-driven task. One must bear in mind that too many knots can result
in overfitting (e.g., one knot for every hour results in too unnatural bumpy behavior), and, on the
other hand, that too few knots can result in an inadequate fit (e.g., one knot for every two hours does
not satisfactorily capture the nonlinear behavior of the data). After a little experimenting, we selected
one knot for every 90 minutes, which captures all the important nonlinearities and does not produce
overfitting. Note that weekly aggregation is used in (1), which results in the same daily seasonal
component for Mondays, Tuesdays, etc. To ensure continuity between Sundays and Mondays, the
sample is stacked three times consecutively and the adjusted inter-arrival times are computed based
on the second sub-sample. Parameters are estimated by the WLS.

The fitted values are shown in Figure 1 and 2. Note that they do not coincide with the smooth
cubic spline function due to a linear trend which makes the corresponding fitted line saw-toothed. The
diurnally and seasonally adjusted and detrended inter-arrival times are computed as the exponentiated
residuals of estimated equation (1) and for convenience, they are standardized to have unit mean.
Their values range from 0.002 to 11.23 minutes.

3.3 Fit of the Dynamic Model

Even after the seasonal and diurnal adjustment, the inter-arrival times still tend to cluster over time
– long (short) inter-arrival times are likely to be followed by long (short) inter-arrival times. This
dependence is not particularly strong, but nevertheless it is statistically significant, as illustrated in
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Figure 2: Intra-week view of raw inter-arrival times and their fitted diurnal/seasonal pattern.

Model Estimate Model Fit
Spec. Dist. c b a ψ φ Lik. AIC

Static Exp. 0.00 0.00 0.00 1.00 1.00 −5 753.00 11 508.00
Static Weibull -0.01 0.00 0.00 1.00 0.97 −5 748.93 11 501.86
Static Gamma 0.04 0.00 0.00 0.96 1.00 −5 749.77 11 503.54
Static G. G. -0.12 0.00 0.00 1.08 0.93 −5 748.37 11 502.75
Dyn. Exp. 0.00 0.76 0.06 1.00 1.00 −5 728.28 11 462.56
Dyn. Weibull 0.00 0.75 0.06 1.00 0.97 −5 724.89 11 457.79
Dyn. Gamma 0.01 0.76 0.06 0.97 1.00 −5 725.97 11 459.95
Dyn. G. G. -0.06 0.72 0.07 1.15 0.90 −5 723.31 11 456.62

Table 1: Parameter estimates of the inter-arrival time models with the log-likelihood value (Lik.) and
the Akaike information criterion (AIC).

Figure 3. To capture the autocorrelation, we use the dynamic model based on the generalized gamma
distribution with the GAS dynamics in (6). The parameters are estimated by the maximum likelihood
method determined by the non-linear optimization problem in (8) and the log-likelihood function in
(7). For comparison, we also present the results for static and dynamic models based on special cases
of the generalized gamma distribution (G.G.), namely, the exponential (Exp.), Weibull, and gamma
distributions.

Parameter estimates and the performance evaluation in terms of the Akaike information criterion
(AIC) of both static and dynamic inter-arrival time models are shown in Table 1. The AIC values
are at least 43.59 lower for the dynamic models than for their static counterparts. However, the
differences between the dynamic models are not so striking: the highest difference is between the
exponential and generalized gamma distributions (by 5.94). The best performing model is the most
general one, the dynamic GAS model using the generalized gamma distribution. The dynamic models
based on either the exponential or generalized gamma distributions in comparison with their static
counterparts are further analyzed in the simulation study of queueing systems.
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Figure 3: The autocorrelation function (ACF) and the partial autocorrelation function (PACF) of
adjusted inter-arrival times. Red dashed lines indicate 5% confidence bounds.

4 Impact on Queueing Systems

4.1 System with Single Server

Using simulations, we now investigate the effects of various arrival models on performance measures in
queueing systems. We consider models based on the exponential and generalized gamma distributions
with the static and dynamic specifications. The coefficients of the models are taken from Table 1. In
all models, the rate of arrivals is λ = 1 job per minute. First, we focus on the queueing system with
a single server only. We consider the service times to be independent and exponentially distributed
with the rate µ ranging from 1.1 to 1.5 jobs per minute. We simulate the arrival and service processes
and measure the number of customers in the system, the busy period of the server, and the response
time. The number of simulation runs is equal to 109, which seems to be sufficient for the reported
precision of one decimal place as the results are in line with the theoretical performance measures for
the static exponential scenario as well as Little’s law for all scenarios.

The results are presented in Table 2. For all values of µ, the systems based on the generalized
gamma distribution have higher values of performance measures than the systems based on the
exponential distribution in terms of the mean, standard deviation, and 95 percent quantile. Similarly,
systems with the dynamic specification have higher values of performance measures than the systems
with the static specification. The left plot of Figure 4 shows how the probability mass function of
the number of customers differs for the static and dynamic models. The dynamic model has a higher
probability of an empty system as there is a tendency to have longer periods of low activity. It has
also higher probabilities of large numbers of customers in the system, as arrivals tend to cluster.
The right plot of Figure 4 shows how the density functions of the response times for the static and
dynamic models differ. In the dynamic model, customers simply have to wait longer. The differences
between the static and dynamic models are naturally weaker for larger µ.

These results carry a warning for practice. When the standard M/M/1 system is assumed but the
arrivals actually follow the GAS model based on the generalized gamma distribution, the performance
measures are significantly underestimated. For example, the mean number of customers and the mean
response time are 22 percent lower than the actual value for µ = 1.1 jobs per minute. It is therefore
crucial to correctly specify the model for arrivals.
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Figure 4: The probability mass functions of the number of customers in the system and density
functions of the response time for the static and dynamic arrival models based on the generalized
gamma distribution in a queueing system with single server and µ = 1.1 jobs per minute.

Queueing System No. of Customers Busy Period Response Time
µ Spec. Dist. M SD 95% M SD 95% M SD 95%

1.1 Static Exp. 10.0 10.5 31.0 10.0 45.8 39.8 10.0 10.0 30.0
1.1 Static G. G. 10.4 10.9 32.0 10.4 47.6 41.4 10.4 10.4 31.1
1.1 Dyn. Exp. 12.4 13.4 39.0 10.8 54.4 41.2 12.4 12.6 37.6
1.1 Dyn. G. G. 12.8 13.8 41.0 11.2 56.1 43.0 12.8 13.1 39.0
1.2 Static Exp. 5.0 5.5 16.0 5.0 16.6 22.1 5.0 5.0 15.0
1.2 Static G. G. 5.2 5.7 17.0 5.2 17.2 22.9 5.2 5.2 15.5
1.2 Dyn. Exp. 6.0 6.8 20.0 5.4 19.5 23.3 6.0 6.1 18.3
1.2 Dyn. G. G. 6.2 7.1 20.0 5.6 20.2 24.4 6.2 6.4 19.0
1.3 Static Exp. 3.3 3.8 11.0 3.3 9.2 14.8 3.3 3.3 10.0
1.3 Static G. G. 3.4 3.9 11.0 3.4 9.6 15.3 3.4 3.4 10.3
1.3 Dyn. Exp. 3.9 4.6 13.0 3.5 10.7 15.7 3.9 4.0 11.9
1.3 Dyn. G. G. 4.0 4.8 14.0 3.7 11.2 16.4 4.0 4.2 12.4
1.4 Static Exp. 2.5 3.0 8.0 2.5 6.1 11.0 2.5 2.5 7.5
1.4 Static G. G. 2.6 3.1 9.0 2.6 6.3 11.3 2.6 2.6 7.7
1.4 Dyn. Exp. 2.8 3.5 10.0 2.6 7.0 11.5 2.8 2.9 8.7
1.4 Dyn. G. G. 3.0 3.7 10.0 2.7 7.3 12.1 3.0 3.1 9.1
1.5 Static Exp. 2.0 2.4 7.0 2.0 4.5 8.6 2.0 2.0 6.0
1.5 Static G. G. 2.1 2.5 7.0 2.1 4.6 8.9 2.1 2.1 6.2
1.5 Dyn. Exp. 2.2 2.9 8.0 2.1 5.1 9.0 2.2 2.3 6.8
1.5 Dyn. G. G. 2.3 3.0 8.0 2.2 5.3 9.4 2.3 2.4 7.1

Table 2: Mean values (M), standard deviations (SD) and 95%-quantiles (95%) of the number of
customers in the system, the busy period of the server and the response time in various queueing
systems with a single server.
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Figure 5: Costs related to the number of servers and long queues for the static and dynamic arrival
models based on the generalized gamma distribution in queueing systems with multiple servers and
µ = 0.10 jobs per minute.

4.2 System with Multiple Servers

Next, we consider queueing systems with multiple servers. We base the simulations on the same
setting as in the previous section. The only difference lies in the service structure. We let the number
of servers c range from 11 to 15 and take the individual service rate to be µ = 0.1 jobs per minute.
Such values result in the same server utilizations ρ = λ/(cµ) as in the previous section. Again, we
measure the number of customers in the system, the busy period of the servers, and the response
time. By the busy period, we mean the full busy period, i.e., the duration of the state in which all
servers are busy.

The results are presented in Table 3. They are very similar to those for a system with a single
server: the generalized gamma distribution and the dynamic specification increase all performance
measures. When incorrectly assuming an M/M/c system, the specification error is distinct but not
as high as in the case of a single server. For example, when assuming an M/M/11 system, the mean
number of customers and the mean response time are 14 percent lower than the actual value for
arrivals based on the generalized gamma distribution with the dynamic specification.

In the following toy example, we illustrate how the misspecification of the arrival model can affect
decision making. Let us assume that there are two types of costs associated with the operation of
the system: the cost of running one server per unit of time C1 = 10 euro per minute, and the cost of
having a queue longer than 30 customers per unit of time C2 = 3000 euro per minute. The analytic
department is faced with the question of how many servers to operate. The composition of costs
for different numbers of servers is shown in Figure 5. The optimal number of servers according to
the static model is 12 while it is 13 for the dynamic model. An analyst employing the static model
believes that the total optimal costs are 127.13 euro per minute while they actually are 142.87 euro
per minute for the suboptimal choice of 12 servers. An analyst correctly specifying the dynamic
model finds that the lowest possible costs are 132.32 euro per minute for the optimal choice of 13
servers. The decision based on the misspecified arrival model therefore results in a total cost increase
of 8 percent.

4.3 Discussion of More Complex Systems

We have focused on rather simple queueing systems in order to get transparent results. The M/M/1
system is as straightforward as can be, and therefore the best choice for an illustration of the impact
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Queueing System No. of Customers Busy Period Response Time
c Spec. Dist. M SD 95% M SD 95% M SD 95%

11 Static Exp. 16.8 10.7 38.0 10.0 45.8 39.9 16.8 13.8 43.8
11 Static G. G. 17.2 11.1 39.0 10.4 47.6 41.4 17.2 14.0 44.6
11 Dyn. Exp. 19.1 13.5 46.0 12.4 58.6 49.7 19.1 15.7 49.9
11 Dyn. G. G. 19.5 14.0 47.0 12.8 60.3 51.8 19.5 16.1 50.9
12 Static Exp. 12.2 5.8 24.0 5.0 16.6 22.1 12.2 10.8 33.6
12 Static G. G. 12.4 6.1 24.0 5.2 17.2 22.9 12.4 10.9 33.8
12 Dyn. Exp. 13.1 7.2 27.0 6.1 21.1 27.5 13.1 11.3 35.4
12 Dyn. G. G. 13.3 7.5 28.0 6.3 21.9 28.7 13.3 11.5 35.8
13 Static Exp. 11.0 4.4 19.0 3.3 9.2 14.8 11.0 10.3 31.3
13 Static G. G. 11.0 4.5 19.0 3.4 9.6 15.3 11.0 10.3 31.4
13 Dyn. Exp. 11.4 5.2 21.0 4.0 11.7 18.4 11.4 10.5 32.0
13 Dyn. G. G. 11.5 5.4 22.0 4.2 12.1 19.1 11.5 10.5 32.2
14 Static Exp. 10.4 3.8 17.0 2.5 6.1 11.0 10.4 10.1 30.5
14 Static G. G. 10.5 3.9 17.0 2.6 6.3 11.3 10.5 10.1 30.6
14 Dyn. Exp. 10.7 4.4 19.0 3.0 7.7 13.5 10.7 10.2 30.9
14 Dyn. G. G. 10.7 4.5 19.0 3.1 8.0 14.0 10.7 10.2 30.9
15 Static Exp. 10.2 3.5 16.0 2.0 4.5 8.6 10.2 10.0 30.2
15 Static G. G. 10.2 3.6 16.0 2.1 4.6 8.9 10.2 10.0 30.2
15 Dyn. Exp. 10.3 3.9 17.0 2.3 5.6 10.5 10.3 10.1 30.4
15 Dyn. G. G. 10.3 4.1 18.0 2.4 5.8 10.9 10.3 10.1 30.4

Table 3: Mean values (M), standard deviations (SD) and 95%-quantiles (95%) of the number of
customers in the system, the full busy period of servers and the response time in various queueing
systems with multiple servers and µ = 0.1 jobs per minute.
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of autocorrelated arrivals. The M/M/c system is used as a robustness check to show that the behavior
observed for the M/M/1 system is present even for different specifications. As for the toy example of
decision making in the M/M/c system, it is meant just as a simplistic illustration revealing a potential
source of suboptimal decisions.

On the other hand, Tomanová (2018), Tomanová (2019b), and Tomanová (2019a) explore a
much more realistic and complex queueing system specific to this case of an online bookshop. As
this queueing system is tailored just for this specific application and cannot be easily transferred to
others, we only summarize the main findings. Tomanová (2018) performs a process quality assessment
based on process simulation and reports that the key quality target is not satisfied in almost twice as
many cases when the dynamic model is considered (the target is not satisfied in 6.16 percent of them)
than when the static model is considered (for which the target is not satisfied 3.23 percent of the
time). The common approach – a static model which assumes that times between arrivals follow the
exponential distribution with a constant rate – underestimates the probability of extreme values and
thus significantly skews the basis for process quality assessment and leads to suboptimal decisions.
Tomanová (2019b) also demonstrates that the clustering of arrivals increases the probability of weeks
with an extreme number of arrivals, something which has a negative effect on the fulfillment of targets.
Tomanová (2019a) further extends that work to making final recommendations for the management
of the online bookshop. The main finding is that 21 percent of the orders are not satisfied within a
working day due to insufficiently allocated resources for the first stage (pre-processing of arrivals).

5 Conclusion

We have analyzed the dependence of inter-arrival times in queueing systems and demonstrated the
negative effect of misspecifying the arrival model on decision making. To capture the autocorrelation
structure of the inter-arrival times, we have proposed using a dynamic model based on the generalized
gamma distribution with the GAS dynamics. We have found that this approach is superior to the
standard model that uses the exponential distribution with a constant rate, since it leads to a more
faithful representation of the mean and extreme values of the arrival process. Our study has carried
out three steps.

1. We have constructed a suitable model for capturing the diurnal and seasonal dependencies which
takes into account a specific time-structure of inter-arrival times. It uses a cubic spline approach
and estimates the parameters by the weighted ordinary least square method to properly adjust
inter-arrival times during hours that exhibit a small median but a huge dispersion.

2. We have found that the GAS models based on the generalized gamma distribution and its special
cases fit the data better than do their static counterparts. This is due to the fact that the static
models ignore the autocorrelation structure, which is still present even after the proper diurnal
and seasonal adjustments.

3. We have compared both static and dynamic models in a simulation study of queueing systems
with single and multiple servers and exponential services. We have shown that ignoring the
autocorrelation structure leads to biased performance measures. The number of customers in
the system, the busy periods of the servers, and the response times, have higher means and
variances as well as heavier tails for the proposed dynamic arrivals model than for the standard
static model. We have also shown how a trust in the standard static model for inter-arrival
times leads to suboptimal decisions and consequently to a loss of profits.

A proper treatment of arrival dependence is of great importance since its ignorance generates
extra costs. Our approach is useful for process simulations and consequently for process optimization
and process quality assessment.

The main limitation of this paper and a topic for future research is the theoretical treatment
of queueing systems with inter-arrival times following the GAS model. In the paper, we have re-
sorted to simulations to determine the moments, quantiles, and density functions of the performance
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measures. Theoretical derivations of these quantities and functions is undoubtedly challenging but
perhaps possible in some cases. Another topic for future research, which would be easier to achieve,
is the use of the proposed approach in other applications. Besides retail order processing, these
may include customer service, project management, manufacturing engineering, emergency services,
logistics, transportation, telecommunications, computing, and others.
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