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Abstract
This habilitation thesis deals with two important areas of hierarchical clustering of categori-

cal data, namely similarity measures for categorical data represented by nominal variables

with more than two categories and evaluation criteria for the cluster quality assessment.

The conducted literature review shows more research needs to be done in this area. Thus,

the thesis explores these topics deeply using two experiments based on generated datasets

with controlled properties, such as the number of variables or clusters. The first experiment

performed on 2,700 datasets analyzes 16 similarity measures concerning their ability to pro-

duce good-quality clusters in different dataset properties and linkage methods. Some of the

analyzed similarity measures are analyzed for the very first time in the domain of cluster

analysis. The second experiment performed on 8,100 datasets compares 11 evaluation criteria

for categorical data proposed in various papers. Two of them are newly proposed in this

thesis. The criteria are examined from different perspectives, such as their mutual similarity

or dependence on the clustered dataset’s properties. In the conclusions of both experiments,

the most appropriate similarity measures for a specific dataset’s properties and evaluation

criteria for several intended tasks are recommended. Since the thesis focuses on a practical

application of the research outcomes, it presents and further improves a convenient software

application that enables researchers to easily replicate the results in the thesis and, more

importantly, to perform advanced approaches to categorical data clustering on their own.

Key words: categorical data, hierarchical cluster analysis, comparison, similarity measures,

evaluation criteria, R package
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Abstrakt
Tato habilitační práce se věnuje dvěma důležitým oblastem hierarchického shlukování katego-

riálních dat, a to mírám podobnosti pro kategoriální data obsahující nominální proměnné

s více než dvěma kategoriemi a hodnoticím kritériím pro posouzení kvality shluků. Provedená

rešerše literatury ukazuje, že v této oblasti je třeba provést další výzkum. Práce se tedy těmto

tématům věnuje hlouběji prostřednictvím dvou experimentů založených na generovaných

datových souborech s předem stanovenými parametry, jako je počet proměnných nebo shluků.

V prvním experimentu, provedeném na 2 700 datových souborů, je analyzováno 16 měr po-

dobnosti ohledně jejich schopnosti vytvářet kvalitní shluky u datových souborů s různými

parametry a u různých metod shlukové analýzy. Některé z analyzovaných měr podobnosti

jsou v oblasti shlukové analýzy zkoumány vůbec poprvé. Ve druhém experimentu, založeném

na analýze 8 100 datových souborů, se porovnává 11 hodnoticích kritérií určených pro ka-

tegoriální data, která byla představena v různých článcích. Dvě z nich jsou navržena v této

práci. Kritéria jsou zkoumána z různých hledisek, například na základě vzájemné podobnosti

nebo závislosti na parametrech shlukovaného souboru dat. V závěrech obou experimentů jsou

doporučeny nejvhodnější míry podobnosti pro typické situace a hodnoticí kritéria na základě

zamýšlené úlohy. Vzhledem k tomu, že se práce zaměřuje na praktické využití výsledků vý-

zkumu, je v ní představena a dále vylepšena softwarová aplikace, která umožňuje výzkumným

pracovníkům snadno zopakovat výsledky uvedené v práci, a především samostatně provádět

pokročilé metody shlukování kategoriálních dat.

Klíčová slova: kategoriální data, hierarchická shluková analýza, porovnání, míry podobnosti,

hodnoticí kritéria, R balíček
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Preface

My primary motivation for writing this habilitation thesis was to thoroughly cover the not-

well-explored topic of hierarchical cluster analysis (HCA) of categorical data in one scientific

text. I wanted to focus on parts of the research that differed substantially from quantitative

data clustering, namely dissimilarity matrix calculation and assessment of final clusters. It

meant exploring the areas of similarity measures for categorical data and evaluation criteria

for categorical data clustering. I aimed to ensure that my conclusions would impact how

the HCA of categorical data was used in practice. Therefore, an essential part of the thesis

is the recommendation to other researchers of the best approaches. In addition, the thesis

presents a software application that enables users to perform all the procedures in the thesis,

so researchers have easy access to the examined methods without a need to program them.

The thesis deals with three main topics: similarity measures for categorical data, evaluation

criteria for categorical data, and an R package for categorical data clustering. Since I already

dealt with the issues of similarity measures and the R package in my dissertation thesis (Šulc,

2016), I want to clarify the main contributions of the habilitation thesis compared to the

dissertation.

The first topic of the thesis, similarity measures for categorical data, is primarily based on the

paper written by Šulc and Řezanková (2019). Compared to my dissertation thesis (Šulc, 2016),

it analyzes similarity measures and linkage methods mutually and provides recommendations

on which similarity measures are most appropriate for given properties of a dataset. The

habilitation thesis further extends this research by four similarity measures that have not

been examined before in the domain o hierarchical clustering. It also provides an updated

methodology of similarity measures quality assessment in HCA based on boxplots.

The second topic, evaluation criteria for categorical data, is the new research that examines the

properties of evaluation criteria and their mutual relationships. A minor part of this research

focuses on the criteria’s ability to determine the optimal number of clusters, which builds on

the paper of Šulc et al. (2018).

The third topic, the nomclust R package for categorical data clustering, is based on the paper

prepared by Šulc et al. (2022), which introduced the second generation of the nomclust
package to the scientific community. The habilitation thesis extends this research mostly
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Preface

about new similarity measures, evaluation criteria, and variable weighting, presented in the

latest package version. Compared to the first generation of the package proposed by Šulc

(2016), the second generation is completely reworked and contains many features unavailable

in the first generation. For instance, new evaluation criteria, the ability to produce graphical

outputs or the support for S3 generic functions can be emphasized.

Although I am the primary author of the papers (Šulc and Řezanková, 2019) and (Šulc et al.,

2022), I did not write them alone. Therefore, I would like to thank prof. Hana Řezanková for

her priceless pieces of advice regarding the theoretical background of the research and the

precise check of both papers. I also want to thank Mgr. Jana Cibulková for her assistance with

the graphical functions in the nomclust package, and Ing. Jaroslav Horníček for the help with

C++ programming.
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Introduction

Cluster analysis is a multivariate statistical method that reveals an underlying data structure

by identifying homogeneous groups (clusters) of objects. The choice of a suitable clustering

method depends on the type of clustered data. The quantitative data enables a researcher

to choose from many well-examined clustering methods based on various principles, such

as distance, model, density, or grid. The list of suitable approaches for categorical data is

considerably shorter, and the available methods are less examined than the methods for

quantitative data. Therefore, this thesis focuses on categorical data clustering.

The clustering of objects characterized by categorical variables has become an important issue

in recent years. There are many economic areas where a growing demand for categorical data

clustering occurs. In marketing research and sociology, data from questionnaire surveys are

often processed, e.g., to perform market segmentation, study customer behavior, or recognize

societal opinions. There is a large application area in official statistics where cluster analysis

can be used, for instance, for grouping similar regions based on the answers obtained via the

Business Tendency Survey conducted by OECD (Organization for Economic Co-operation

and Development) or to indicate household types in a society based on government surveys,

such as EU-SILC (European Union Statistics on Income and Living Conditions). However, the

use of cluster analysis for datasets with categorical data goes far beyond the field of economy.

For instance, in artificial intelligence research, the clustering of categorical data is used for

text-mining tasks to understand a written text or to analyze unstructured data.

This thesis deals with the agglomerative hierarchical cluster analysis (HCA) of categorical data.

Under the term categorical data, only the data containing nominal variables are considered.

This type of data has its specifics, among others, the inability to determine the order of

categories. In fact, categories of nominal variables can be differentiated only by their equality

or inequality. This often results in a very simplistic determination of dissimilarities between

pairs of objects that does not reflect any additional information about the clustered dataset,

such as the number of categories or frequency distributions of variables. The categorical nature

of data also complicates the use of many evaluation criteria for cluster quality assessment

proposed for quantitative data, which are usually based on the sum of squares or other

variability concepts that are not applicable to categorical data. Although there have been

developed categorical alternatives for some of these criteria, there is still no comparative study

that assesses their quality and properties. The abovementioned problems show that HCA of
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data with categorical variables is one of the least investigated major clustering algorithms.

In the HCA of categorical data, the selection of linkage methods, similarity measures, and

evaluation criteria is vastly limited compared to the approaches designed for quantitative data.

Some linkage methods for quantitative data work with concepts that do not apply to data with

categorical variables, such as cluster centroids by the centroid method or the within-cluster

variability by Ward’s method.

When selecting similarity measures to get dissimilarities between pairs of objects in HCA, there

arises a problem of similarity definition between categories in categorical data. Currently, the

most common way is to transform the variables into binary ones and use similarity measures

for binary or quantitative data. However, these measures cannot utilize the information in

sets of binary variables in the same way as the untransformed variables, see (Goodall, 1966).

Thus, it is necessary to consider the use of this approach carefully. The other option is to

use similarity measures directly determined for categorical data. Currently, the approaches

introduced more than 50 years ago, such as the simple matching measure (Sokal and Michener,

1958) and the categorical (nominal) part of the Gower distance (Gower, 1971) for mixed-

type data, are commonly used for this task. They only recognize if two categories match

or not. Since then, many more sophisticated approaches have been introduced, e.g., by

Eskin et al. (2002) or Boriah et al. (2008), that take into account various dataset properties for

better similarity definition, such as frequency distributions of variables or their numbers of

categories. Some of these approaches were examined by Šulc (2016). Still, there is room for

deeper analysis and extending the research to more similarity measures for categorical data.

The important part of cluster analysis is the evaluation of the produced clusters, where the

internal evaluation criteria (using intrinsic properties of a dataset) are the most appropriate

since cluster analysis is an unsupervised method. Again, the number of evaluation criteria

for categorical data is vastly limited compared to the quantitative data. Currently, only a few

established evaluation criteria are determined for this data type. For purely categorical data, a

few variability-based criteria, such as pseudo-F index based on mutability (PSFM) and pseudo-

F index based on entropy (PSFE) (Řezanková et al., 2011), can be used. For categorical or mixed-

type data, the Akaike information criterion (AIC) and Bayesian information criterion (BIC),

proposed in SPSS, Inc. (2001), which are based on likelihood approximation, are available.

The other option is to use evaluation criteria based on a dissimilarity (proximity, distance)

matrix, which is a typical output of hierarchical clustering that does not require the original

dataset, such as the Dunn index (Dunn, 1973) or silhouette coefficient (Rousseeuw, 1987).

Internal evaluation criteria for categorical data clustering were examined only by Šulc et al.

(2018) regarding the optimal number of clusters determination. However, a paper comparing

criteria for cluster quality evaluation is still missing.

Another limitation of the hierarchical clustering of categorical data is its lack of implemen-

tation in commercial and non-commercial software. Currently, two convenient ways (apart

from programming) to cluster such data exist. The first one lies in binary data transformation
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and using one of many similarity measures for binary data, e.g., in SPSS. The drawback of this

approach is that similarity measures for binary-coded data often provide the same cluster par-

titions as the simple matching measure, as it was discovered by Šulc (2016). The second way is

to use the nomclust package created by Šulc and Řezanková (2015) for the R environment (R

Core Team, 2021). The package covers the whole clustering process, i.e., from proximity matrix

calculation, over the clustering method selection, to an assessment of the created clusters, and

it is freely available on CRAN (The Comprehensive R Archive Network). Although the package

works relatively well (and some researchers use it), it suffers from low computational speed,

and there is still room for adding many improvements, such as new evaluation criteria and

graphical outputs.

It is evident that the HCA of categorical data has many unsolved issues that limit its use com-

pared to the well-established methods for quantitative data clustering. Thus, the habilitation

thesis aims to extend the research of Šulc (2016) through three main research goals.

Goal 1. Similarity measures for categorical data. The first objective is to inspect additional

similarity measures for categorical data compared to those examined by Šulc (2016), such as

the measures proposed by Burnaby (1970) or Gambaryan (1964), and to compare them using

internal evaluation criteria for categorical data. The aim is to recommend several suitable

similarity measures for a given dataset’s properties. Since the performance of similarity

measures is strongly influenced by the linkage method used (Šulc, 2016), the combinations of

similarity measures and three different linkage methods will also be examined. The outcomes

of the experiment performed on generated datasets will help researchers reduce the number

of the considered similarity measures when conducting cluster analysis.

Goal 2. Internal evaluation criteria for the clusters created from categorical data. The

second objective, which is partly based on the research by Šulc et al. (2018), is to compare the

commonly used internal evaluation criteria for categorical data, analyze their mutual rela-

tionships from different perspectives, and examine the relationship between the investigated

internal criteria and the adjusted Rand index, a typical representative of the external criteria.

A partial goal is to propose new internal criteria based on the variability of the clustered

variables. The outcomes based on generated datasets should help a researcher decide which

evaluation criterion is suitable for a particular situation or inform which criteria assess the

cluster quality almost identically.

Goal 3. nomclust 2.0. The third objective is to present the second generation of the nomclust
R package (Šulc et al., 2022) to the scientific community, further improve it, and illustrate its

use. The second generation of the package deals with the drawbacks outlined in the previous

text. The aim is that researchers can replicate the research in this thesis and use the package

for categorical data clustering on their own.

Apart from Introduction and Conclusion, the thesis consists of six thematic chapters. The

first one describes the current knowledge of the selected categorical data clustering areas.

The second one outlines theoretical approaches to the examined similarity measures for
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categorical data clustering. The third one deals with evaluation criteria for assessing the

created clusters. The fourth one presents the second generation of the nomclust R package.

The fifth and sixth chapters carry out the experiments comparing the examined similarity

measures and evaluation criteria for the categorical data. A more detailed description of the

thesis’s chapters is presented in the paragraphs below.

Chapter 1 presents the current state of knowledge in categorical data clustering divided into

three sections that correspond to three goals set in the thesis. The text is not restricted to

hierarchical clustering, but it also describes alternative methods to categorical data clustering,

including the software solutions where they can be found.

Chapter 2 focuses on the similarity measures that can be used in HCA of categorical data. It

is divided into four sections. The first one describes the calculation steps of the examined

similarity measures from a mathematical perspective. In the second one, the similarity mea-

sures are categorized according to the principles they are based on, and their history and

properties are described. The third section proposes a new variable weighting concept based

on adjusting similarity measure values, later demonstrated in Chapter 4. The fourth section

presents the methods of hierarchical cluster analysis that determine how the dissimilarity

(based on the similarity measures) between two clusters is calculated.

Chapter 3 deals with evaluation criteria used in categorical data clustering, where they assess

the created clusters’ quality. It is divided into two sections. The first one describes external

evaluation criteria; one of them is used for internal evaluation criteria assessment in Chapter 6.

The second one provides an extensive overview of the internal evaluation criteria determined

for categorical data, which are divided according to the principle they are built on. Moreover,

two new internal criteria are proposed in this section.

Chapter 4 presents the nomclust R package. It is divided into two sections. The first section

mainly describes a theoretical background of the package’s functionalities. The second one

demonstrates the typical use of the package on several practical examples that illustrate

different scenarios of the possible package use.

Chapter 5 contains the first experiment dealing with comparing the examined similarity

measures for categorical data presented in Chapter 2. It is divided into three sections. The

first describes the dataset generation for the experiment, the second defines the research

methodology, and the third one contains the experiment itself. The analysis determines

the generally well-performing similarity measures and recommends which combinations

of similarity measures and linkage methods are the most suitable for the specific dataset

properties.

Chapter 6 carries out the experiment comparing and assessing the internal evaluation cri-

teria for categorical data presented in Chapter 3. It is divided into three sections. The first

one defines the data generation process and similarity measures selection for the second

experiment. The second one describes the statistical methods used for the evaluation criteria
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comparison. The third one comprises the experiment, which examines the mutual similarity

of the evaluation criteria, their ability to determine the optimal number of clusters and their

dependence on clustered dataset properties. Eventually, specific evaluation criteria for the

typical tasks are recommended.
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1 State of Knowledge

This chapter presents a state of knowledge for the three main research areas. The first part

describes advances in categorical data clustering and similarity measures for categorical data.

The second part is devoted to evaluation criteria applicable to outputs of the categorical data

clustering. The third one covers different software solutions that can be used for categorical

data clustering.

1.1 Categorical Data Clustering

Many approaches can be used for categorical data clustering. One can use HCA with the

similarity measures for binary or nominal variables, some flat clustering algorithms, such as

the k-modes clustering, or even model-based approaches, i.e., latent class analysis. In this

subsection, the options will be briefly described.

When clustering categorical data, currently, the most common way is to transform the variables

into binary ones and use HCA with similarity measures for binary variables, such as the Jaccard

coefficient (Jaccard, 1912). In the 1950s and 1960s, researchers from different fields introduced

many similarity measures for binary data. Therefore, some measures were known under

several names. These measures were summarized, e.g., by Warrens (2008) or Cibulková et al.

(2020). Unfortunately, many of these measures are identical or strongly linearly dependent

(Todeschini et al., 2012). Cibulková et al. (2020) divided 66 similarity measures for binary-

coded data into four distinct groups, the largest of which provided the same cluster partitions

as the simple matching approach. Other interesting approaches for similarity measures

for categorical data use binary data transformation. For instance, Morlini and Zani (2012)

developed two similarity measures for nominal variables which use a binary transformation.

They are information-based similarity measures that were evaluated in clustering on real-

world and simulated datasets.

Goodall (1966) introduced a new similarity measure directly determined for categorical data,

where the rare matching pairs of values contributed more to the total similarity. In his study,

9



Chapter 1. State of Knowledge

the new measure was compared with commonly used measures for binary data, such as the

Jaccard coefficient, the first similarity measure for binary data, on a numerical taxonomy

dataset. In the following years, many similarity measures for categorical data that considered

the dataset properties were introduced. For instance, Spärck Jones (1972) proposed a similarity

measure based on an inverse document frequency principle, which assigned higher weights

to less frequent matches compared to more frequent ones, or Lin (1998) attempted to create

a universal probabilistic similarity measure. Another interesting example is the measure

proposed by Eskin et al. (2002), which uses the number of categories of a variable for similarity

determination. The measure was originally introduced for unsupervised anomaly detection

in the density-based clustering algorithm. It was evaluated on two intrusion datasets, and

it showed promising results. Boriah et al. (2008) proposed several modifications of original

similarity measures introduced by Goodall (1966) and Lin (1998). New similarity measures

and algorithms based on this principle are constantly proposed, e.g., (Desai et al., 2011) or

(Yi et al., 2016). Usually, they are primarily determined for the text-mining tasks. There are

only a few papers where the measures for categorical data were independently compared and

evaluated. For instance, the research of Boriah et al. (2008) and Chandola et al. (2009), where

the selected similarity measures for categorical data were evaluated in a domain of outlier

detection. The performance of these measures in HCA was evaluated only by Šulc (2016), who

found out which similarity measures perform well and under which circumstances. However,

there are still some similarity measures whose performance in hierarchical clustering needs to

be examined.

From the distance-based algorithms, one can also use partitioning methods, also known as

flat clustering, that iteratively assign objects to the closest cluster center. In categorical data,

this approach is typically represented by the k-modes method (Chaturvedi et al., 2001), where

the cluster centers are defined as the vector of modes for variable values belonging to the

clusters. The other option is to use the k-prototypes clustering that deals with quantitative

and categorical variables. The main advantage of the partitioning method is its computation

speed, enabling a researcher to cluster objects in large datasets. Among the drawbacks, a

tendency to find a local optimum and the necessity to set the number of clusters in advance

can be mentioned. The research in this area is still active. Currently, it focuses mainly on

mixed-type data clustering, (e.g., Ahmad and Khan, 2019).

There are some alternative approaches to categorical data clustering that can be either model-

or distance-based. The model-based clustering assumes that the clusters are defined by

parametric distributions, and the whole dataset is a mixture of such distributions (Anderlucci

and Hennig, 2014). An object is assigned to a cluster with the highest conditional probabi-

lity. The most commonly used representative is latent class analysis (LCA) (Hagenaars and

McCutcheon, 2002), which usually provides good-quality clusters. LCA is a complex method

determined not only for clustering but also for other statistical tasks, such as causal analysis

(Hagenaars and McCutcheon, 2002); see also (Šulc, 2016).

Regarding the distance-based methods, one can use relatively known TwoStep cluster analysis
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(Bacher et al., 2004), which is implemented in IBM SPSS (SPSS, Inc., 2001). It was designed to

cluster large datasets comprising quantitative and categorical variables. Thus, the algorithm

uses the log-likelihood distance, whose formula contains parts for quantitative and categorical

variables. The algorithm is fast because it only goes through a whole dataset once. It consists

of two steps. In the first one, preliminary clusters are created sequentially. In the second one,

the hierarchical cluster algorithm is applied to the preliminary clusters. The method also

contains a procedure that enables determining the optimal cluster solutions. The TwoStep

method and the similarity measures for categorical data in HCA were compared by Šulc (2016).

There are some additional approaches for categorical data that are not very known. One of

them is the ROCK algorithm (Guha et al., 1999) that transforms the categorical data into sets

of binary variables, and consequently, the Jaccard coefficient is used. It is based on principles

of the graph theory, in particular links, which is the number of common neighbors between

a pair of objects. Two objects are considered neighbors if their distance is equal to or lower

than a user-set cutoff value. The ROCK algorithm generally creates good clusters. However,

some objects in the dataset do not have to be assigned to any cluster, which can be considered

a severe drawback in certain situations. One can also use the COOLCAT algorithm (Barbará

et al., 2002) that aims to minimize the entropy of the created clusters.

1.2 Cluster Assessment in Categorical Data

External or internal evaluation criteria, also known as cluster validation indices, can assess the

obtained cluster assignments. The external criteria (see, e.g., de Souto et al., 2012; Draszawka

and Szymański, 2011), compare a cluster assignment to a priori-known class variable. Since

the class variable is usually unknown in clustering tasks, the external criteria are unsuitable for

practical application. However, they are helpful in simulation studies, where the properties of

the clustering algorithms are assessed. The internal criteria (see, e.g., Liu et al., 2010; Miligan

and Cooper, 1985; Vendramin et al., 2010), use intrinsic properties of a dataset to determine

the cluster quality or suggest the optimal number of clusters. It makes them more suitable for

practical application than the external criteria because the correct cluster assignment is usually

unknown. For their calculation, an original dataset or a distance matrix based on an original

dataset is necessary. Some internal criteria, such as the BK (best k) index (Chen and Liu,

2009) or the Hartigan’s rule (Hartigan, 1975), were primarily designed to suggest the optimal

number of clusters in a dataset, while another (Arbelaitz et al., 2013; Dimitriadou et al., 2002)

to assess the quality of the created clusters. A big topic is the analysis of relationships between

external and internal evaluation criteria, which often leads to the question if internal criteria

provide comparable results to the external criteria. In quantitative data, these relationships

were studied, e.g., by Hennig (2022); Kargar et al. (2019); Tomasini. et al. (2017); Rendón et al.

(2011); Halkidi et al. (2001). Unfortunately, there is no such analysis for categorical data.

When dealing with categorical data clustering, a researcher can use the PSFE and PSFM criteria

(Řezanková et al., 2011), which are the modifications of the pseudo-F index (Caliński and
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Harabasz, 1974) for datasets with categorical variables. One can also use Category Utility (CU)

and Category Information (CI) criteria introduced by Corter and Gluck (1992) or the BK index

(Chen and Liu, 2009). Next, there are the modifications of the AIC and BIC indices (SPSS, Inc.,

2001) derived from the original information criteria proposed by Akaike (1973) and Schwarz

(1978). Another approach is to use one of several criteria based on a dissimilarity matrix, e.g.,

the silhouette index (Rousseeuw, 1987) or the Dunn index (Dunn, 1973). Thus, overall, there

are many internal evaluation criteria. The problem is that they are not sufficiently examined,

and therefore, only a few papers use them when evaluating categorical clustering results. For

instance, the applications presented by Xavier et al. (2013) and Bontemps and Toussile (2013)

can be mentioned.

Although many papers compare internal evaluation criteria for quantitative data (e.g., Miligan

and Cooper, 1985; Brun et al., 2007; Vendramin et al., 2010), there are only several papers

where the internal evaluation criteria suitable for categorical data are compared or assessed.

For instance, Šulc et al. (2018) examined 11 internal evaluation criteria suitable for categorical

data from an aspect of the determination of the optimal number of clusters in the generated

datasets. However, this research did not analyze the internal criteria’ ability to judge the

created clusters’ quality. Another example is a paper prepared by Bai and Liang (2015), who

inspected the performance of three cluster validity functions determined to optimize the k-

modes algorithm on several real datasets. Since these functions were used within the k-modes

algorithm, they cannot be used to compare different clustering algorithms, such as HCA, on a

given dataset.

1.3 Software for Categorical Data Clustering

If a given algorithm is to be considered for the general public or common researchers’ use,

providing a suitable software implementation is essential. Only a few researchers will program

the algorithm on their own. This subsection provides an overview of the software used for

categorical data clustering.

In HCA of categorical data, one can use the hclust() function from the stats R package or

the agnes() function from the cluster package (Maechler et al., 2022). The functions enable

a researcher to use any pre-calculated dissimilarity matrix as an input based, for instance,

on one of ten similarity measures for binary data in the Mercator R package (Coombes and

Coombes, 2022), or one of more than twenty similarity measures in IBM SPSS. Unfortunately,

there are not many dissimilarity matrix functions for categorical data. One of the few is

the Gower distance (Gower, 1971) in the daisy() function in the cluster package, which

calculates the simple matching approach for nominal variables in a dataset. The next option

is to calculate the dissimilarity matrix using one of 13 similarity measures for categorical data

in the first generation of the nomclust package (Šulc and Řezanková, 2015). The package also

contains an option to use the nomclust() function that covers the whole clustering process

of categorical data clustering, including, e.g., assessment of the cluster quality. Considering
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the partitioning methods, the k-modes clustering can be performed by the function kmodes()
in the klaR R package (Weihs et al., 2005). The k-prototypes algorithm is complexly covered

in the clustMixType R package (Szepannek, 2018).

The alternative approaches to categorical data clustering are primarily implemented in R,

some in commercial software. Latent class analysis is available in various software, e.g., in

LatentGold (Vermunt and Magidson, 2016). In R, LCA can be run using the function poLCA()
in the poLCA package (Linzer and Lewis, 2011). The TwoStep cluster analysis procedure has

been present in IBM SPSS since 2000 (version 11.5). There are not many alternatives to this

method in other software. In R, a researcher can use the prcr package (Rosenberg et al.,

2020), which is based on the research by Bergman and El-Khouri (1999), but this method is

not entirely equivalent alternative, so the analysis setting and the provided clusters can differ.

The ROCK algorithm can be applied using the function rockCluster() in the cba R package

(Buchta, Hahsler, 2019), and the COOLCAT algorithm using the function coolcat() in the

coolcat R package that is not available on CRAN (The Comprehensive R Archive Network),

but it can be found in GitHub (Github, 2020).
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2 Similarity Measures and Methods for
Categorical Data Clustering

Similarity measures play a key role in many multivariate methods, such as multidimensional

scaling, outlier detection, or cluster analysis. They serve to determine (dis)similarity between

objects characterized by vectors of values. Commonly used similarity measures for datasets

with quantitative variables, e.g., the Euclidean distance or the Manhattan distance (see, e.g.,

Deza and Deza, 2009; Warrens, 2016) are well examined. A more complicated situation occurs

when nominal variables are used. Currently, a researcher can choose from many not-well-

explored approaches that were analyzed mainly in papers where they were introduced, often

with outstanding results. However, there are only a few papers where these measures were

independently compared and evaluated. For instance, Boriah et al. (2008); Chandola et al.

(2009) assessed the selected similarity measures for categorical data in a domain of outlier

detection, or Šulc (2016) analyzed the selected similarity measures in the area of HCA of

categorical data.

The chapter extends the research by Šulc and Řezanková (2019). It presents the 16 similarity

measures for categorical data, which will be used in the first experiment in Chapter 5. It

contains four sections. In the first one, the similarity measures are presented. Second one

describes their properties in greater detail. The third proposes a method for adjusting the

similarity measures for the task of variable weighting. The last section presents the linkage

methods that can be used with the similarity measures for categorical data.

2.1 Similarity Measures for Categorical Data

In this thesis, similarity measures for categorical data are defined as those which are deter-

mined to deal with nominal variables with more than two categories and do not need a dummy

transformation. Table 2.1 presents the examined similarity measures overview with their full

names, abbreviations that will be used throughout the thesis, and the papers where they were

introduced.
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Table 2.1: Overview of the examined similarity measures

Name Abbreviation Introduced by

Anderberg AN Anderberg (1973)
Burnaby BU Burnaby (1970)

Eskin ES Eskin et al. (2002)
Goodall 1 G1 Boriah et al. (2008) based on (Goodall, 1966)
Goodall 2 G2 Boriah et al. (2008) based on (Goodall, 1966)
Goodall 3 G3 Boriah et al. (2008)
Goodall 4 G4 Boriah et al. (2008)

Gambaryan GA Gambaryan (1964)
Inverse Occurrence Frequency IOF Spärck Jones (1972)

Lin LIN Boriah et al. (2008) based on (Lin, 1998)
Lin 1 LIN1 Boriah et al. (2008) based on (Lin, 1998)

Occurrence Frequency OF Spärck Jones (1972)
Simple Matching Coefficient SM Sokal and Michener (1958)

Smirnov SV Smirnov (1968)
Variable Entropy VE Šulc (2016)

Variable Mutability VM Šulc (2016)

All the investigated similarity measures are applied directly to the data matrix X = [xi c ], where

i = 1,2, . . . ,n (n is the total number of objects); c = 1,2, . . . ,m (m is the total number of

variables). The number of categories of the cth variable is denoted as Kc , an absolute frequency

of a category equal to the value xi c as f (xi c ), and a relative frequency as p(xi c ). An absolute

frequency of the uth category (u = 1,2, ...Kc ) in the cth variable is marked as fcu and the relative

frequency as pcu . The G1, G2, G3, and G4 measures use the adjusted relative frequencies

according to the formula

p̂2 = f ( f −1)

n(n −1)
. (2.1)

Fifteen of the examined similarity measures are calculated in two steps. In the first one,

similarities between values of the cth variable for the i th and j th objects Sc
(
xi c , x j c

)
are

computed separately. The Sc computation differs based on the match xi c = x j c or mismatch

xi c ̸= x j c of categories as described in Table 2.2.

In the second step, the similarity S
(
xi ,x j

)
between the objects xi and x j is determined. The

calculation depends on the similarity measure, as described in Table 2.3. The majority of

the examined similarity measures use the first way (column Type), which is defined as the

arithmetic mean of the similarities Sc
(
xi c , x j c

)
. The measures LIN and LIN1 use the approach

based on relative frequencies, and the measures GA and SV utilize the numbers of categories

in the calculation.

The thesis examines one similarity measure, AN, which does not follow the two-step approach
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Table 2.2: Formulas for the similarity measures for categorical data

Measure Sc for xi c = x j c Sc for xi c ̸= x j c

BU 1
∑Kc

u=1 2ln(1−pcu)

ln
p(xi c )p(x j c )

(1−p(xi c ))(1−p(xi c ))

∑Kc
u=1 2ln(1−pcu)

ES 1 K 2
c

K 2
c +2

G1 1− ∑
q∈Q

p̂2 (
q
)

0

G2 1− ∑
q∈Q

p̂2 (
q
)

0

G3 1− p̂2 (xi c ) 0

G4 p̂2 (xi c ) 0

GA −[
p(xi c ) log2 p(xi c )+ (1−p(xi c )) log2(1−p(xi c ))

]
1

IOF 1
1

1+ ln f (xi c ) · ln f
(
x j c

)
LIN 2ln p (xi c ) 2ln

(
p (xi c )+p

(
x j c

))
LIN1

∑
q∈Q

ln p
(
q
)

2ln
∑

q∈Q
p

(
q
)

OF 1
1

1+ ln n
f (xi c ) · ln n

f (x j c )

SM 1 0

SV 2+ n − f (xi c )

f (xi c )
+

Kc∑
u=1:u ̸=xi c

fcu

n − fcu

Kc∑
u=1:u ̸=xi c ,x j c

fcu

n − fcu

VE − 1

ln Kc

Kc∑
u=1

pcu ln pcu
0

VM Kc

Kc −1

(
1−

Kc∑
u=1

p2
cu

)
0

Q is a subset of X containing all q fulfilling a certain condition. For the G1 measure, it is defined as
Q ⊆ Xc : ∀q, p̂

(
q
)≤ p̂ (xi c ), for the G2 measure as Q ⊆ Xc : ∀q, p̂

(
q
)≥ p̂ (xi c ), and for the LIN1 measure

as Q ⊆ Xc : ∀q, p (xi c ) ≤ p
(
q
) ≤ p

(
x j c

)
. For the VE measure, if pcu = 0, the corresponding addend

equals zero.

of similarity calculation as the measures in Table 2.2. Instead, it enables a researcher to

determine the similarity S
(
xi ,x j

)
in one step using the formula:

S AN
(
xi ,x j

)= ∑m
c=1:xi c=x j c

(
1

p(xi c )

)2
2

Kc (Kc+1)∑m
c=1:xi c=x j c

(
1

p(xi c )

)2
2

Kc (Kc+1) +
∑m

c=1:xi c ̸=x j c

(
1

2p(xi c )p(x j c )

)
2

Kc (Kc+1)

. (2.2)
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Table 2.3: Similarity definition between two objects

Type Measures S
(
xi ,x j

)
I BU, ES, G1, G2, G3, G4, IOF, OF, SM, VE, VM S

(
xi ,x j

)= ∑m
c=1 Sc

(
xi c , x j c

)
m

II LIN, LIN1 S
(
xi ,x j

)= ∑m
c=1 Sc

(
xi c , x j c

)∑m
c=1

(
ln p (xi c )+ ln p

(
x j c

))
III GA, SV S

(
xi ,x j

)= ∑m
c=1 Sc

(
xi c , x j c

)∑m
c=1 Kc

In order to create a dissimilarity matrix, which is required by the majority of software solu-

tions to perform HCA, it is necessary to compute dissimilarities D
(
xi ,x j

)
between all pairs

of objects, which can be obtained from similarities S
(
xi ,x j

)
. The dissimilarity calculation

depends on the range of values a given similarity measure can attain; see Table 2.4. For most

similarity measures that take on values between zero and one, the dissimilarity is defined as a

complement to one. The second way is suitable for the similarity measures whose possible

maximum is lower than one. The SV measure can take on values exceeding one; thus, it uses

the third way of dissimilarity determination.

Dissimilarities derived from specific similarity measures, namely G1, G2, G3, G4, LIN1, VE,

and VM, do not reach zero dissimilarity for two identical objects as might be expected. The

reason is that these similarity measures use weights in the case of a match of categories that

cannot reach the value one in most situations. Then, the dissimilarities, calculated using the

formulas in Table 2.4, are higher than one. Fortunately, the positive dissimilarities for identical

objects are not an obstacle for performing HCA since the dissimilarity matrix requirements are

met, i.e., D (xi ,xi ) = 0, D
(
xi ,x j

)≥ 0 and D
(
xi ,x j

)= D
(
x j ,xi

)
(Everitt et al., 2009). However, if

one wants to guarantee zero dissimilarities between identical objects, the rest of the similarity

measures in Table 2.2 and the AN measure can be used for this purpose.

Table 2.4: Dissimilarity definition between two objects

Type Measures D
(
xi ,x j

)
I AN, BU, GA, G1, G2, G3, G4, SM, VE, VM D

(
xi ,x j

)= 1−S
(
xi ,x j

)
II ES, IOF, LIN, LIN1, OF D

(
xi ,x j

)= 1

S
(
xi ,x j

) −1

III SV D
(
xi ,x j

)= 1

S
(
xi ,x j

) +1

For the LIN and LIN1 measures, if S
(
xi ,x j

)= 0, the D
(
xi ,x j

)
is calculated as max1≤i , j≤n D

(
xi ,x j

)+1.
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2.2 Properties of the Examined Similarity Measures

This section provides a detailed description of the examined similarity measures. There

are different ways of possible classification. For instance, the similarity measures can be

divided according to the datasets’ characteristics used for similarity definition. Table 2.5 shows

which datasets’ properties are utilized by the similarity measures to improve the definition of

similarity between objects. Most similarity measures are based on one principle, for example,

ES on the number of categories or IOF on absolute frequencies. The measures AN and SV utilize

two different characteristics. The SM measure representing the simple matching approach

does not use any dataset property to improve the similarity definition. Another classification

can be based on how the similarity measures express the similarity between objects, i.e., in

matches of categories, mismatches of categories, or both ways. In this section, the measures

are classified according to the latter way.

Table 2.5: Classification of the similarity measures based on their principle

Based on . . . D
(
xi ,x j

)
none SM

number of categories ES, AN

absolute frequencies IOF, OF, SV

relative frequencies LIN, LIN1, GA, AN

adjusted relative frequencies G1, G2, G3, G4

number of objects SV

2.2.1 Reference similarity measure

The SM (simple matching) measure, introduced by Sokal and Michener (1958), only recognizes

whether two categories match or not. Thus, it neglects important dataset characteristics, such

as the number of categories or the absolute frequencies of categories, which could be utilized

for better similarity determination. Nevertheless, the SM measure is considered the standard

because it is still the most used similarity measure for categorical data. It is used as a part

of other similarity measures as well, for instance, in the Gower similarity coefficient (see

Gower, 1971), which serves for similarity determination between objects characterized by

the mixed-type variables. Therefore, SM will be used as a reference similarity measure in this

thesis.

Šulc (2016) found out that the hierarchical clustering with the SM measure provides the same

clusters as the clustering with most of similarity measures determined for the binary-coded

data, namely the measures Dice (Dice, 1945), Jaccard (Jaccard, 1912), Russel and Rao (Russel

and Rao, 1940), Rogers and Tanimoto (Rogers and Tanimoto, 1960), Sokal and Michener (Sokal

and Michener, 1958), Sokal and Sneath 1, Sokal and Sneath 2, Sokal and Sneath 4, Sokal and
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Sneath 5 proposed by Sokal and Sneath (1963), Hamman (Hamann, 1961), Yule Q (Yule, 1900)

and Yule Y (Yule, 1912). This topic was further analyzed by Cibulková et al. (2020), who studied

similarity measures for binary data and found that the clusters obtained with 66 similarity

measures for binary data can be classified into four groups that provide the same cluster

assignment. The largest one, named Euclid-based measures, provides the same clusters as the

SM measure.

2.2.2 Similarity measures evaluating the matches of categories

The G1 measure was introduced by Boriah et al. (2008) as a derivative of the original Goodall’s

measure (see Goodall, 1966). The first step of the calculation is the same as in the original

measure. The second step is calculated as the arithmetic mean (Type I in Table 2.3) instead

of a more complicated approach based on dependencies of used variables. The G1 measure

uses the adjusted relative frequency of the observed category according to Eq. 2.1, and all the

adjusted relative frequencies that are lower than the observed one. It takes on values from

zero to 1− 2
n(n−1) .

The G2 measure (Boriah et al., 2008) is another variant of Goodall’s measure. It gives higher

weight to matches of infrequent categories if the variable contains even rarer values. The

measure uses adjusted relative frequency of categories that are equal or higher to the observed

one. It takes on values from zero to 1− 2
n(n−1) .

The G3 measure (Boriah et al., 2008) assigns higher weights to matches of infrequent categories.

It does not consider frequencies of non-matching categories, and it takes on values from zero

to 1− 2
n(n−1) .

The G4 measure (Boriah et al., 2008) puts higher weights if the matching values are frequent.

Similarly, as G3, it does not consider frequencies of non-matching categories. It takes on

values from 2
n(n−1) to one.

The GA measure was proposed by Gambaryan (1964), and it assigns higher weights to matches

of categories that are not rare nor frequent (Boriah et al., 2008). Its formula is related to

Shannon information theory (Shannon, 1948). The measure takes on values in the range from

zero to one.

The VE and VM measures (Šulc, 2016) are two variability-based similarity measures for catego-

rical data. The measures are based on a new concept where the similarity between categories

xi c and x j c by the cth variable is based on the within-cluster variability of the cth variable. Let

us assume two different variables, one with high variability, i.e., with approximately evenly

distributed categories, and the other with small variability, where one category is dominant,

and the rest are sparsely represented. Both similarity measures praise the match of two

categories in the variable with the high variability because it is rarer than the match in the

low-variability variable. For individual variables variability definition, the VE measure uses the

entropy, and the VM measure uses the nominal variance, also known as the mutability or the
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Gini coefficient. Both of these variability measures use relative frequencies of all categories.

The VE and VM measures were developed to be simple, not computationally demanding, and

theory-based. They take on values from zero to one in the case of a match and zero otherwise.

In the case of a match, the zero value can be attained if a given variable takes on only one

category for all cases in a dataset. In this case, the variable becomes redundant for clustering,

and the zero value for the appropriate weight is fully justified. The value one occurs in matches

if all categories by a given variable are equally distributed. When determining the overall

similarity between the objects xi and x j , both the similarity measures can take on values from

the range zero to one as well. Zero similarity is obtained if there is no match over all variables

(or they contain only one category, as mentioned before). The value one is achieved if there

are matches over all variables and all of them have the maximum possible variability.

2.2.3 Similarity measures evaluating the mismatches of categories

The BU measure (Burnaby, 1970) is based on the information theory where the rarely ob-

served values are considered more informative. Thus, the measure assigns low similarity to

mismatches of frequent categories and high similarity to mismatches of rare categories. For

mismatches, it takes on values from
n ln

(
1− 1

n

)
n ln

(
1− 1

n

)−ln(n−1)
to one.

The ES measure was originally proposed by Eskin et al. (2002) as a distance measure. As a

similarity measure, it uses the number of categories Kc of the cth variable to determine the

similarity between two categories. It assigns higher weights to mismatches for variables with

more categories. It takes on values from 2
3 to 1− n2

n2+2 .

The IOF (inverse occurrence frequency) measure, proposed by Spärck Jones (1972), uses the

absolute frequencies of the observed categories to achieve a more precise similarity definition

between two categories in the case of mismatches. Initially, the measure was introduced in the

information retrieval field, where it determined a relative number of documents containing

a specific word. The original measure was designed to deal only with binary variables; later,

it was adjusted to deal with nominal variables. IOF assigns higher weights to less frequent

mismatches, and it takes on values from 1
1+(

ln n
2

)2 to one.

The OF (occurrence frequency) measure (Spärck Jones, 1972) is based on the same principle as

IOF, but it differs in the weight system. It assigns higher weights to more frequent mismatches,

and it takes on values from 1
1+(lnn)2 to 1

1+(ln2)2 .

2.2.4 Similarity measures evaluating the matches and mismatches of categories

The AN measure, proposed by Anderberg (1973), is based on the idea that the rare values are

the key to determining the similarity. Therefore, it assigns a high weight to matches of rare

values and a lower weight to mismatches of rare values. It takes on values from zero to one.
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The LIN measure was introduced by Boriah et al. (2008) based on the framework outlined by

Lin (1998). It represents an information-theoretic definition of similarity based on relative

frequencies. It assigns higher weights to more frequent categories in the case of the match

and lower weights to less frequent categories in the case of the mismatch. In the case of a

match, it takes on values from −2lnn to zero; in the case of a mismatch, it can attain values

from −2ln n
2 to zero.

The LIN1 measure is another measure proposed by Boriah et al. (2008) based on Lin’s frame-

work. It has a complex weight system. Boriah et al. (2008) described it in the following way: "It

gives lower weight to mismatches if either of the mismatching values is very frequent, or if there

are several values that have a frequency in between those of mismatching values. Higher weight

is given when there are mismatches on infrequent values, and there are a few other infrequent

values. For matches, lower weight is given for matches on frequent categories or matches on

values that have many other values of the same frequency. Higher weight is given to matches on

rare values." The range for matches and mismatches is the same by this measure, which takes

on values from −2lnn to zero.

The SV measure, proposed by Smirnov (1968), represents a probabilistic approach to deter-

mining the similarity between two objects. It utilizes the absolute frequencies of the match or

mismatch and the absolute frequencies of all categories of a given variable. It assigns higher

weights to rare matches. For matches, it takes on values from two to 2n, and for mismatches,

from zero to n
2 −1.

2.3 Variable Weighting in Hierarchical Clustering

Variable weighting is typically helpful if one of the variables is too influential that it substan-

tially affects the created clusters. Setting a lower weight to such a variable can diminish its

importance in clustering. In some situations, a researcher has external information about the

examined problem. Variable weighting can help him set the variable importance accordingly

to the external information provided. However, no variable weighting approach is developed

for the hierarchical clustering of categorical data. Therefore, a simple method for variable

weighting in HCA is proposed in this thesis.

In HCA of categorical data, the proposed variable weighting method is applied at the lowest

level of similarity determination, i.e., at the level where the similarity Sc
(
xi c , x j c

)
between two

categories of the cth variable is calculated, see Table 2.2. Let us have a vector w of the length

m containing weights for all variables in a dataset, which is restricted to contain values in a

range from zero to one. Then, the weighted similarity SW c between the categories xi c and x j c

by the cth variable can be obtained using the formula

SW c
(
xi c , x j c

)= Sc
(
xi c , x j c

) ·wc∑
t wt

, (2.3)
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where t = 1,2, . . . ,c, . . . ,m. The rest of the dissimilarity matrix calculation remains unchanged.

The presented approach to the variable weighting can be applied to the Type I and Type II

similarity measures in Table 2.3. Thus, the variable weights cannot be currently applied to the

measures AN, GA, and SV.

2.4 Methods of Hierarchical Cluster Analysis

Hierarchical cluster analysis (see, e.g., Everitt et al., 2009; Hennig et al., 2015), is based either

on an agglomerative or divisive clustering process. Usually, the agglomerative process is used.

This type of clustering considers each object a cluster at the start of the clustering process.

Then, the two most similar clusters are joined into a new one, and the dissimilarity matrix

is recalculated. This algorithm repeats itself until there is one cluster left. Then, the created

hierarchy of clusters can be cut at any point to get the desired number of clusters. The linkage

method plays an important role in cluster hierarchy creation because it defines the value of

dissimilarity, which will be used after merging two clusters.

Compared to the quantitative data, where various linkage methods are available, the number

of linkage methods for categorical data is limited. The reason is that some linkage methods for

the quantitative data work with concepts that do not apply to categorical data, such as cluster

centroids by the centroid method or the within-cluster variance by Ward’s method. Although

there are ways to deal with these limitations, (see, e.g., Strauss and von Maltitz, 2017; Chen

and Guo, 2014), for a comparison of the examined similarity measures in this thesis, three

commonly used linkage methods using between-cluster distances based on dissimilarities are

used, namely, the single, complete and average linkage methods.

The single linkage method (SLM) defines the dissimilarity between clusters Cg and Ch as

the distance between the two closest objects of two different clusters. This linkage is often

associated with a problem called chaining phenomenon, in which clusters are merged based

on their closest elements, even though some are very distant. However, this linkage method

performs better than other linkages when the clusters are not spherical or elliptical in shape.

The complete linkage method (CLM) considers a dissimilarity between two clusters D(Cg ,Ch)

as the dissimilarity between two farthest objects from these clusters. This between-cluster

distance usually provides compact clusters with approximately equal diameters. However, it is

sensitive to outliers. The average linkage method (ALM) takes the average pairwise dissimilarity

between objects in two clusters. It is a robust method, considered a compromise between the

single and the complete linkages. An overview of the used linkage methods formulas occurs in

Table 2.6, where ng and nh are the numbers of objects in clusters Cg and Ch .

To illustrate a relationship between dissimilarity matrix values and the presented linkage

methods in a graphical way, an example based on the procedure by Anselin et al. (2006) is

shown. Table 2.7 contains the original dissimilarity matrix, where each object represents

a standalone cluster. Objects 3 and 5 are the most similar since their mutual dissimilarity
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Table 2.6: An overview of the linkage methods

linkage method D(Cg ,Ch)

single min
xi∈Cg ,x j∈Ch

D(xi ,x j )

complete max
xi∈Cg ,x j∈Ch

D(xi ,x j )

average
1

ng nh

∑
xi∈Cg

∑
x j∈Ch

D(xi ,x j )

equal to 0.466 is the lowest from all pairs of objects (the field outlined in purple). Thus,

these two objects will be merged in the next calculation step, and the dissimilarity matrix

will be recalculated. The selected linkage method determines the way of dissimilarity matrix

recalculation.

Table 2.7: Original dissimilarity matrix – step 1 (example)

1 2 3 4 5 6

1 0 0.617 1.000 0.796 0.889 0.907

2 0 0.841 0.637 0.730 0.748

3 0 0.841 0.466 0.654

4 0 0.730 0.594

5 0 0.841

6 0

Table 2.8 shows the second step of dissimilarity matrix calculation when SLM is used. Due

to merging, the table contains one less row and column. The highlighted cells indicate the

newly calculated dissimilarities for the new row (and column) “3+5”. The values are calculated

according to the formula for SLM in Table 2.6. For instance, the dissimilarity 0.889 between

the clusters “1” and “3+5” is defined as the minimum of the distances 1.000 (between clusters

“1” and “3”) and 0.889 (between clusters “1” and “5”) in Table 2.7. After that, the procedure

is repeated until only one cluster is left. All the calculations steps of SLM occur in Table I in

Appendix A.

Table 2.8: Single linkage method – step 2 (example)

1 2 3+5 4 6

1 0 0.617 0.889 0.796 0.907

2 0 0.730 0.637 0.748

3+5 0 0.730 0.654

4 0 0.594

6 0

The second step of CLM is presented in Table 2.9. According to the formula for CLM in Table
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2.6, the dissimilarity 1.000 between the clusters “1” and “3+5” is defined as the maximum of

the distances 1.000 (between clusters “1” and “3”) and 0.889 (between clusters “1” and “5”) in

Table 2.7.

Table 2.9: Complete linkage method – step 2 (example)

1 2 3+5 4 6

1 0 0.617 1.000 0.796 0.907

2 0 0.841 0.637 0.748

3+5 0 0.841 0.654

4 0 0.594

6 0

Table 2.10 contains the second step of the ALM calculation, which uses the weighted average

of the dissimilarities for two merged clusters, as stated in Table 2.6. Since this is the second

step of the calculation, where the original objects are merged, the dissimilarity 0.945 between

the clusters “1” and “3+5” is defined as the simple arithmetic mean of the distances 1.000

(between clusters “1” and “3”) and 0.889 (between clusters “1” and “5”). However, in the

following steps of calculations, the arithmetic mean needs to be weighted by the number of

objects in the merged clusters.

Table 2.10: Average linkage method – step 2 (example)

1 2 3+5 4 6

1 0 0.617 0.945 0.796 0.907

2 0 0.785 0.637 0.748

3+5 0 0.785 0.747

4 0 0.594

6 0
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3 Cluster Evaluation Criteria

Cluster analysis comprises a set of often very distinct approaches which have in common

that they produce a vector with cluster memberships for the objects in a dataset. The created

clusters can considerably differ using different algorithms or methods. Therefore, comparing

several cluster assignments using at least one evaluation criterion can help a researcher choose

the most suitable cluster partition.

This chapter is partly based on the paper written by Šulc et al. (2018), and it is divided into

two sections. The first section deals with external evaluation criteria suitable for the research

based on simulation studies, such as those presented in the experiment. The second one

offers one of the most extensive overviews of internal evaluation criteria for categorical data.

Moreover, two new internal criteria are proposed there.

3.1 External Evaluation Criteria

This section presents two external indices commonly used by many researchers, namely the

Rand index and the adjusted Rand index. Their use is demonstrated in the example illustrated

in Figure 3.1, see (Manning et al., 2008).

cluster I cluster II cluster III

x
x x

x

x x

xo o

o

o
o

v

v
v

v
x

Figure 3.1: An example of object assignment into three clusters
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The commonly used Rand and adjusted Rand indices are based on an approach, which can

be interpreted as a series of decisions for each of n × (n −1)/2 pairs of less or more similar

objects in a dataset. Four possible types of decisions for pairs assignment can be made. A true

positive (T P ) decision expresses the number of all combinations of pairs correctly assigned to

the same clusters. A true negative (T N ) decision is the number of all combinations of pairs

that are correctly assigned into different clusters. There can occur two types of error decisions.

A false positive (F P ) decision represents the number of combinations of pairs of dissimilar

objects that are falsely assigned to the same cluster, and a false negative (F N ) decision is the

number of combinations for similar pairs that are falsely assigned into two different clusters.

These four types of decisions can be summarized in the form of the 2×2 confusion table, see

Table 3.1.

Table 3.1: Confusion table

Actual
Predicted Positive Negative

Positive T P F P
Negative F N T N

The Rand (RI) index (Rand, 1971), with the formula

RI = T P +T N

T P +F P +F N +T N
, (3.1)

represents a ratio of correctly assigned objects, both positively and negatively, out of all

possible pairs. It takes on values from zero to one.

Although Eq. 3.1 seems to be simple, the calculation of this index is relatively complex. For

instance, if one wants to calculate RI based on Figure 3.1, a cooccurrence matrix needs to be

created first; see Table 3.2.

Table 3.2: Cooccurrence matrix (example)

Actual
Prediction I II III

x 5 1 2
o 1 4 0
v 0 1 3

The quantity T P can be calculated as the sum of all combination numbers (choose two) in

the matrix higher than one, i.e., T P = (5
2

)+ (4
2

)+ (3
2

)+ (2
2

) = 20. Then, the quantity T P +F P

can be calculated as the sum of combination numbers of the row sums of the matrix, i.e.,

T P +F P = (6
2

)+ (6
2

)+ (5
2

)= 40. Analogically, the quantity T P +F N is determined as T P +F N =(8
2

)+(5
2

)+(4
2

)= 44. Finally, the quantity T P +F P +F N +T N is calculated as the total number of

objects choose two, i.e., T P +F P +F N +T N = (17
2

)= 136. Based on the calculated quantities,
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the frequencies in the confusion table can be obtained; see Table 3.3. Thus, the RI value, based

on Eq. (3.1), is 0.676.

Table 3.3: Confusion table (example)

Actual
Predicted Positive Negative

Positive 20 20
Negative 24 72

The adjusted Rand index (ARI) (Hubert and Arabie, 1985) can also be used for a comparison of

two membership partitions. Compared to the original Rand index, it is corrected for a chance.

Theoretically, it takes on values between minus one and one, but only slightly negative values

usually occur. The value one indicates identical partitions, and zero the randomly assigned

partitions. The positive values express that the predicted values are better than the random

chance. It can be expressed as

ARI = T P − (T P+F P )(T P+F N )
T P+F P+F N+T N

(T P+F P )+(T P+F N )
2 − (T P+F P )(T P+F N )

T P+F P+F N+T N

. (3.2)

Based on the quantities in Table 3.3, the ARI value is 0.243.

3.2 Internal Evaluation Criteria

The internal evaluation criteria are usually constructed to satisfy the principles of compactness

or separation of the created clusters (Liu et al., 2010; Zhao et al., 2005). The compactness

declares the similarity of objects in clusters. It can be expressed by the closeness of objects

in clusters, low within-cluster variability, or the high value of a likelihood function. The

separation measures cluster distinctness. It is usually represented by the high between-cluster

variability or the high distance between clusters. Some criteria are built on both principles,

some just on one. This section classifies the criteria into variability-, likelihood-, and distance-

based.

3.2.1 Evaluation criteria based on the variability

In categorical data, variability can be measured by mutability (the Gini coefficient) or entropy.

Whereas mutability is a more straightforward measure whose forms can be interpreted as the

probabilities of distinctions, entropy is a more complex approach that can be interpreted as

the average information needed to distinguish all the information in the data (Ellerman, 2013).
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The mutability of the cth variable (c = 1,2, . . . ,m) in the g th cluster (g = 1,2, . . . ,k) can be

calculated as

Gg c = 1−
Kc∑

u=1

(
ng cu

ng

)2

(3.3)

and the entropy as

Hg c =−
Kc∑

u=1

(
ng cu

ng
ln

ng cu

ng

)
. (3.4)

In the formulas, ng is the number of objects in the g th cluster, ng cu is the number of objects in

the g th cluster by the cth variable with the uth category (u = 1,2, . . . ,Kc ), and Kc is the number

of categories by the cth variable. The corresponding addend equals zero if ng cu = 0.

The within-cluster mutability (WCM) of the whole dataset with m variables broken down into

k clusters is defined as

W C M (k) =
k∑

g=1

ng

n

m∑
c=1

Gg c (3.5)

and the within-cluster entropy (WCE) as

W C E (k) =
k∑

g=1

ng

n

m∑
c=1

Hg c , (3.6)

where m is the total number of variables and n is the number of objects in a dataset. The

special cases W C M(1) and W C E (1) represent total variability in a dataset expressed by muta-

bility respective entropy, and the differences W C M(1)–W C M(k) and W C E(1)–W C E(k) the

between-cluster mutability respective entropy in the k-cluster solution.

The standardized forms of the WCM and WCE criteria take on values in a range from zero to

one and have the formulas

W C Ms (k) =
k∑

g=1

ng

n ·m

m∑
c=1

Kc

Kc −1
Gg c (3.7)

and

W C Es (k) =
k∑

g=1

ng

n ·m

m∑
c=1

Hg c

lnKc
. (3.8)

The standardized forms are helpful when comparing the variability of datasets with different

numbers of categories in categorical variables. When multiplied by 100, the criteria’s values

can be easily interpreted as percentages.

Several evaluation criteria are based on Eq. (3.5) and Eq. (3.6), namely, pseudo-F coefficients
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3.2 Internal Evaluation Criteria

based on mutability (PSFM), pseudo-F coefficients based on entropy (PSFE), category utility

(CU), and category information (CI).

The PSFM and PSFE criteria, proposed by Řezanková et al. (2011), are the modifications of

the pseudo-F index (Caliński and Harabasz, 1974) for datasets with categorical variables. This

index is defined as the ratio of the weighted between-cluster variability (separation principle)

and the weighted within-cluster variability (compactness principle) in the k-cluster solution.

The PSFM criterion is defined as

PSF M (k) = (n −k) [W C M (1)−W C M (k)]

(k −1)W C M (k)
(3.9)

and the PSFE criterion as

PSF E (k) = (n −k) [W C E (1)−W C E (k)]

(k −1)W C E (k)
. (3.10)

The maximal value across all the examined cluster solutions suggests the optimal number of

clusters for both criteria.

Corter and Gluck (1992) proposed two evaluation criteria that measure category goodness,

namely category utility (CU) and category information (CI). The CU criterion measures the

overall quality of partitioning clustered objects into clusters. It is based on the principle that

the ability to predict a given category is higher if the cluster memberships are known than

unknown. Category utility summarizes the gain of conditional probabilities (calculated as

relative frequencies) with the known cluster membership compared to the unconditional

approach, as can be seen in the formula

CU (k) = 1

k

k∑
g=1

ng

n

[
m∑

c=1

Kc∑
u=1

(
ng cu

ng

)2

−
m∑

c=1

Kc∑
u=1

(ncu

n

)2
]

, (3.11)

where
ng cu

ng
represents the conditional relative frequency and ncu

n the unconditional one. The

CI criterion is based on concepts of information theory (Shannon, 1948). It expresses the

expected reduction of information needed to be provided if the cluster membership is known

as follows

C I (k) = 1

k

k∑
g=1

ng

n

[
m∑

c=1

Kc∑
u=1

(
ng cu

ng
ln

ng cu

ng

)
−

m∑
c=1

Kc∑
u=1

(ncu

n
ln

ncu

n

)]
. (3.12)

From Eq. (3.11) and Eq. (3.12), one can derive that the CU and CI criteria can also be expressed

using the between-cluster mutability respective entropy (the separation principle), which can

be defined as

CU (k) = 1

k
[W C M(1)−W C M(k)] (3.13)
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and

C I (k) = 1

k
[W C E(1)−W C E(k)] . (3.14)

Thus, the CU and CI formulas can be interpreted in two ways satisfying two different principles

to cluster quality definition. Moreover, the CI criterion is equivalent to mutual information

(MI) introduced by Shannon (1948), as it is shown by the formula

C I (k) = 1

k

m∑
c=1

[
k∑

g=1

ng

n

[
Kc∑

u=1

(
ng cu

ng
ln

ng cu

ng

)
−

Kc∑
u=1

(ncu

n
ln

ncu

n

)]]
= 1

k

m∑
c=1

M Ic (k) = M I (k).

(3.15)

The CU and CI criteria take on non-negative values, and their maximal values indicate the

optimal number of clusters.

The BK (best k) index (Chen and Liu, 2009) is based on the incremental expected entropy,

which represents the information gain between the expected entropy in the k-cluster and

(k +1)-cluster solutions. The expected incremental entropy can be expressed as

I (k) = HE (k)−HE (k +1), (3.16)

where HE is the expected entropy in a dataset with the formula

HE (k) = 1

k

k∑
g=1

ng

n

m∑
c=1

Hg c

lnKc
. (3.17)

The BK index is defined as the second-order difference of the incremental expected entropy of

the dataset with k clusters.

BK (k) =∆2I (k) = [I (k −1)− I (k)]− [I (k)− I (k +1)] . (3.18)

The highest value of the index indicates the optimal number of clusters.

3.2.2 Evaluation criteria based on likelihood

The Bayesian information criterion (BIC) and the Akaike information criterion (AIC) for the

categorical data were presented in the SPSS technical report (SPSS, Inc., 2001) and further

described by Bacher et al. (2004). Both criteria maximize the likelihood function (compactness

principle) while inflicting a penalty on complex models (Biem, 2003). In terms of clustering,

they penalize solutions with more clusters. Both criteria indicate the optimal number of

clusters by their minimal value.

The modification of the BIC index (Schwarz, 1978) for categorical data can be calculated using
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the formula

B IC (k) = 2
k∑

g=1
ng

m∑
c=1

Hg c +k
m∑

c=1
(Kc −1)lnn (3.19)

and the modification of the AIC index (Akaike, 1973) is defined as

AIC (k) = 2
k∑

g=1
ng

m∑
c=1

Hg c +2k
m∑

c=1
(Kc −1). (3.20)

3.2.3 Evaluation criteria based on distances

The silhouette index (SI) (Rousseeuw, 1987), also known as the average silhouette width, is

defined as the average relative difference between between-cluster (separation principle) and

within-cluster distances (compactness principle). It takes on values from –1 to 1. The high

positive values indicate well-separated clusters with low within-cluster and high between-

cluster distances. The values close to zero or the negative ones suggest badly separated clusters.

The maximal value of the criterion across all the examined cluster solutions indicates the

optimal number of clusters. It can be expressed as

SI (k) = 1

n

n∑
i=1

b(i )−a(i )

max{a(i ),b(i )}
, (3.21)

where a(i ) is the average dissimilarity of the i th object to the other objects in the same cluster,

and b(i ) is the minimum average dissimilarity of the i th object to other objects in any cluster

not containing the i th object.

The Dunn index (DI) (Dunn, 1973) is calculated as a ratio of the smallest within-cluster distance

(compactness principle) to the largest between-cluster distance (separation principle). It takes

on values from zero to infinity. The highest value indicates the optimal cluster solution. For

the cluster solution with k clusters, it can be expressed by the formula

D I (k) = min
1≤g<h≤k

(
D(Cg ,Ch)

max1≤v≤k di am (Cv )

)
, (3.22)

where D(Cg ,Ch) is the distance between the g th and hth clusters (expressed by a given linkage

method), and di am(Cv ) is the maximal distance expressed by a given similarity measure

between two objects in the vth cluster.

The values of distance-based criteria, SI and DI, depend on the similarity measure used

for calculating the distance matrix. Thus, if two different similarity measures do not have a

monotonous relationship, the resulting clusters are not directly comparable using the distance-

based criterion. This issue is more severe in the categorical data, where the distances are

not defined as straightforwardly as in quantitative data. The influence of the used similarity

measures on the evaluation criteria values will be examined in Chapter 6.
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3.2.4 New variability-based evaluation criteria

This thesis proposes two modifications of Hartigan’s rule (Hartigan, 1975) for categorical data,

with the names Hartigan mutability (HM) and Hartigan entropy (HE). The original index for

quantitative data is one of the variability-based methods that a researcher can use for the

optimal number of clusters determination in the k-means algorithm. According to Chiang

and Mirkin (2010), it is one of the best methods developed for this purpose. It is determined as

a ratio of within-cluster variabilities, expressed as sums of squares, in the k and k +1 solutions.

The resulting ratio approximately follows the F distribution with n and n–k–1 degrees of

freedom. The algorithm runs on a series of cluster solutions (starting with k = 2). It stops

when it finds k, whose incremental decrease of the criterion’s value is sufficiently large (usually

higher than 10).

The newly proposed criteria HM and HE are based on the same principle as the original

Hartigan’s rule. They differ in using mutability respective entropy instead of the sum of

squares. However, they still evaluate the marginal gain in cluster compactness when the

number of clusters increases. The criteria are constructed as a ratio of the within-cluster

variability in the k-cluster and (k +1)-cluster solutions. In the case of HM, the within-cluster

variability is expressed by WCM (Eq. (3.5)) using the formula

H M(k) =
(

W C M(k)

W C M(k +1)
−1

)
(n −k −1). (3.23)

HE utilizes WCE (Eq. (3.6)), which can be written as

HE(k) =
(

W C E(k)

W C E(k +1)
−1

)
(n −k −1). (3.24)

Both criteria take on values from zero to infinity, and their minimal values express the optimal

number of clusters over the examined cluster solutions. Similarly, as the original Hartigan’s

rule, the proposed criteria are expected to perform well in the optimal number of clusters

determination. However, they can also be used when judging cluster quality. The performance

of the HM and HE criteria will be examined in the conducted experiment.
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4 The nomclust Package

This chapter presents the second generation of the nomclust R package, proposed by Šulc

et al. (2022). The package was developed for HCA of categorical data. It completely covers

the hierarchical clustering process, from dissimilarity matrix calculation, over the choice of

a clustering method, to the evaluation of the final clusters. The whole clustering process

utilized by the package uses similarity measures, clustering methods, and evaluation criteria

developed solely for categorical data, which makes this package unique.

Compared to the first generation of the package (Šulc and Řezanková, 2015), the second

generation represents a considerable step forward. Among the most noteworthy changes

can be named the wholly redesigned evaluation criteria based on concepts of variability,

likelihood (adjusted for categorical data), and distance. Some of these criteria were examined

by Šulc et al. (2018). Next, the issue with the low calculation speed of hierarchical clustering

was addressed by rewriting the critical parts of the code into C++ to substantially increase

the clustering speed. Finally, the support for S3 generic functions and the ability to draw

dendrograms and values of evaluation criteria was added to the package. The package is

available on the Comprehensive R Archive Network (CRAN) web site1.

4.1 Methods Used in nomclust 2.0

The process of hierarchical clustering consists of three main areas: calculating a dissimilarity

matrix using a selected (dis)similarity measure, creating a hierarchy of clusters by a chosen

linkage method, and optionally evaluating created clusters using one or more evaluation

criteria. In this section, the theoretical background for all these areas in the nomclust package

is described.

1https://cran.r-project.org/package=nomclust
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Chapter 4. The nomclust Package

4.1.1 Dissimilarity matrix

The nomclust package contains 16 similarity measures for categorical data; 14 of them were

summarized by Boriah et al. (2008), and two of them by Šulc and Řezanková (2019). Their

formulas can be found in Section 2.1. In the package, dissimilarity matrices for all the available

similarity measures can be calculated separately from other analysis steps, e.g., as an input

for other R packages. Table 4.1 presents the function calls for these measures and their most

important properties.

4.1.2 Linkage methods

After a dissimilarity matrix is calculated, a hierarchy of clusters needs to be created. The

nomclust package uses agglomerative clustering from the cluster package. Since it is deter-

mined to cluster the categorical data only, only three linkage methods using between-cluster

distances based on dissimilarities suitable for categorical data are available, namely average,

complete, and singe linkage methods; see Section 2.4.

4.1.3 Evaluation criteria

The resulting clusters can be evaluated up to 13 evaluation criteria presented in Section 3.2.

Variability-based coefficients based on mutability and entropy usually do not differ very much.

They are included in the package to provide two independent ways of variability computation.

Substantial differences between mutability- and entropy-based coefficients should attract the

researcher’s attention.

The overview of the used evaluation criteria with their important properties occurs in Table 4.2.

The column Optimum indicates if the maximal or minimal value of the criterion indicates the

optimal number of clusters or if one should rely on the elbow of the curve with the evaluation

criterion values. The elbow method (Thorndike, 1953) allows a researcher to choose the

optimal number of clusters subjectively. It requires a researcher to find a point representing

a certain number of clusters where the curve of criterion values visibly bends from a high to

a low slope. At this point, increasing the number of clusters by one does not bring a sufficient

decrease in the total within-cluster variability. However, the elbow does not have to be visible

in some situations. Then, it is recommended to use a different evaluation criterion.

The recommended number of clusters may differ for different evaluation criteria in the pack-

age. There are no strict guidelines on how to proceed in such a case. One can use the number

of clusters recommended by most of the evaluation criteria. It is also good to inspect one

lower and one higher number of clusters than the recommended one. A researcher should pay

attention to the situation when almost every criterion suggests a different number of clusters.

It may indicate that the clusters in the data are badly separated or that there are no clusters at

all.
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Table 4.1: Function calls and properties for the similarity measures in the nomclust package

Measure Function call It uses . . .

AN anderberg()

the number of categories and relative frequencies of the

observed categories; assigns the high weight to matches of

rare values and the lower weight to mismatches of rare

values.

BU burnaby()
relative frequencies of all categories; assigns low similarity

to mismatches of frequent categories and high similarity to

mismatches of rare categories.

ES eskin()
the number of categories; assigns higher weights to

mismatches by variables with higher number of categories.

G1 goodall1()
relative frequencies of selected categories that are lower

than the observed one; assigns higher weights to infrequent

categories in the case of match.

G2 goodall2()
relative frequencies of selected categories that are higher

than the observed one; assigns higher weights to infrequent

categories in the case of match.

G3 goodall3()
relative frequencies of the observed categories; assigns

higher weights to infrequent categories in the case of match.

G4 goodall4()
relative frequencies of the observed categories; assigns

higher weights to frequent categories in the case of match.

GA gambaryan()
relative frequencies of the observed categories; assigns

higher weights to matches of categories that are not rare nor

frequent.

IOF iof()
absolute frequencies of the observed categories; assigns

higher weights to infrequent mismatches of categories.

LIN lin()

relative frequencies of the observed categories; assigns

higher weights to more frequent categories in the case of

the match, and lower weights to less frequent categories in

the case of the mismatch.

LIN1 lin1()
relative frequencies of the selected categories; a complex

weight system, see (Boriah et al., 2008).

OF of()
absolute frequencies of the observed categories; assigns

higher weights to frequent mismatches of categories.

SM sm()
the simple matching approach; no weight system; a

reference measure.

SV smirnov()
absolute frequencies of the observed categories and the

total frequency; assigns higher weights to rare matches.

VE ve()
relative frequencies of all categories; assigns higher weights

to matches in variables with high variability expressed by

the entropy.

VM vm()
relative frequencies of all categories; assigns higher weights

to matches in variables with high variability expressed by

the mutability.
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Table 4.2: Overview of the internal evaluation criteria in the nomclust package

Criterion Optimum Properties

WCM elbow
Standardized form. Suitable for measurement of the cluster
quality in different cluster solutions; mutability-based.

WCE elbow
Standardized form. Suitable for measurement of the cluster
quality in different cluster solutions; entropy-based.

PSFM max Categorical alternative to the pseudo F-index; mutability-based.
PSFE max Categorical alternative to the pseudo F-index; entropy-based.
CU max The weighted between-cluster variability; mutability-based.
CI max The weighted between-cluster variability; entropy-based.

BK max
Defined as the second-order difference of the incremental
entropy of the dataset with k clusters; entropy-based.

BIC min Categorical alternative to BIC; entropy-based.
AIC min Categorical alternative to AIC; entropy-based.

SI max
Based on a comparison of the within-cluster and
between-cluster distances.

DI max
Based on a comparison of the within-cluster and
between-cluster distances.

HM min Categorical alternative to the Hartigan’s rule; mutability-based.
HE min Categorical alternative to the Hartigan’s rule; entropy-based.

4.1.4 Optimization

Dissimilarity matrix calculation is the most time-demanding part of the hierarchical clustering

process because the number of values in this matrix, which need to be calculated, increases

with the square of the number of observations. The calculation can take minutes, even with

relatively small datasets (several thousand objects). Therefore, hierarchical cluster analysis

is usually recommended for up to 10,000 rows in clustered datasets. Apart from the number

of objects, the dissimilarity matrix calculation time depends on a used similarity measure,

dataset properties (number of variables or categories), and computer speed.

The high complexity of the dissimilarity matrices calculation is caused by many loops in their

code that are not processed efficiently in the R language. Therefore, critical parts of the code of

all the used similarity measures were rewritten to the C++ language, which handles the loops

more effectively. The implementation of the C++ code was performed using the Rcpp package

(Eddelbuettel and Francois, 2011).

To assess the effect of the C++ language implementation, an experiment on 60 generated

datasets1 was conducted. For the experiment, the same datasets were used as those used

by Šulc and Řezanková (2019). The average calculation times of clustering with a certain

1The datasets contained four numbers of variables (four, six, eight, ten), three ranges of categories (2–4, 2–6,
6–10), and the number of cases varied from 300 to 700. Each of the datasets contained four clusters with a middle
between-cluster distance. All the combinations were replicated five times.
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Table 4.3: Performance comparison of the first and second generations of the package

Measure nomclust 1.0 nomclust 2.0 Speed-up

AN – 0.38 s –
BU – 0.42 s –
ES 42.54 s 0.37 s 116×
G1 65.17 s 0.37 s 175×
G2 65.64 s 0.37 s 176×
G3 59.52 s 0.37 s 160×
G4 59.67 s 0.37 s 160×
GA – 0.38 s –
IOF 79.21 s 0.39 s 205×
LIN 80.44 s 0.40 s 200×
LIN1 45.84 s 0.43 s 108×
MZ 430.0 s – –
OF 80.07 s 0.38 s 209×
SM 40.07 s 0.36 s 111×
SV – 0.39 s –
VE 41.42 s 0.37 s 112×
VM 41.27 s 0.37 s 112×

Total 58.41 s 0.38 s 154×
The calculations were performed using R (version 4.2.2) on a machine with the processor 3.7 GHz
6-Core Intel Core i5 and 24 GB of RAM.

similarity measure for the old and new versions of the package are placed in the columns

nomclust 1.0 and nomclust 2.0 in Table 4.3. Considering much lower computation times by

the new version, it is clear that the C++ implementation was successful. Whereas the average

calculation time was 58.41 s by the first release, the average calculation time was just 0.38 s by

the second version of the package. For the similarity measures presented in both generations

of the package, the Speed-up column shows how many times the second release is faster when

using a certain similarity measure compared to the previous version. On average, the new

package version performed 154 times faster in the experiment.
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4.2 Illustrations of Use

The nomclust package can be used either to perform the complete clustering process from dis-

similarity matrix calculation to the evaluation of the obtained clusters using the nomclust()
function or to perform only a part of the clustering using one of the subsidiary functions.

Typical use will be demonstrated using the CA.methods dataset, which is included in the

package.

4.2.1 The whole clustering process

The most crucial function in the nomclust package is the nomclust() function, which com-

pletely covers the hierarchical clustering of categorical data with the function call below.

R> nomclust(data, measure = "lin", method = "average",
clu.high = 6, eval = TRUE, prox = 100, var.weights = NULL)

The only mandatory input argument is data, representing a categorical dataset in a class of

a data.frame or a matrix entering the cluster analysis. The measure argument stands for a

similarity measure used for dissimilarity matrix calculation. Any measure in Table 4.1 can be

used here. The method argument enables a researcher to choose one from one of the three

linkage methods presented in Section 4.1.2. Regarding these two arguments, the average

linkage with the lin similarity measure was set as default because this combination usually

provides the most coherent clusters (Šulc and Řezanková, 2019). The clu.high argument

defines the upper limit for the number of cluster solutions provided in the final output. A

logical argument eval indicates if the evaluation criteria presented in Section 4.1.3 will be

calculated in the nomclust object. The prox argument indicates if a dissimilarity matrix will

be saved in the nomclust object. The argument can be set as a logical value or an integer

specifying the maximum number of objects in a dataset for which a dissimilarity matrix will

be kept in the output. Since a dissimilarity matrix is needed for dendrogram construction, 100

was chosen as the default value of this argument. Thus, one can display dendrograms in small

datasets, where they are most helpful. On the other hand, a large dissimilarity matrix based

on a sizable dataset will not be saved in the nomclust object. The var.weights argument

enables a researcher to set a vector of weights for the clustered variables. Its default value is

set to NULL, indicating that all the variables entering the analysis have the same weight. The

var.weights argument must be assigned to a vector with variable weights for each clustered

variable. The weights take on values from zero to one.

The use of the nomclust() function is demonstrated on the CA.methods dataset, which

contains five different characteristics of 24 clustering algorithms; six of them are displayed

below.
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R> library(nomclust)
R> data("CA.methods")
R> head(CA.methods)

Type OptClu Large TypicalType MoreTypes
AGNES hierarchical no no quantitative yes
BIRCH hierarchical no yes quantitative no
CACTUS grid yes yes categorical no
CLARA partitioning no yes quantitative no
CLIQUE grid yes yes quantitative no
COOLCAT partitioning no yes categorical no

Hierarchical clustering with the G1 similarity measure and the average linkage method is then

performed using the following syntax.

R> hca.G1 <- nomclust(CA.methods, measure = "goodall1")

The resulting output comprises six components in a list. The mem component contains cluster

membership partitions for two to six clusters. For instance, the four-cluster solution can be

obtained using the syntax below.

R> hca.G1$mem$clu_4

[1] 1 1 2 3 2 3 1 2 2 1 2 3 3 3 3 4 4 1 2 3 3 1 2 4

The eval component contains 13 evaluation criteria as vectors in a list. To see them all at

once, the form of a data.frame is more appropriate.

R> as.data.frame(hca.G1$eval)

names WCM WCE PSFM PSFE BIC AIC BK SI DI CU CI HE HM
1 clu_1 0.83 0.85 NA NA 226.39 215.79 NA NA NA NA NA 9.34 7.90
2 clu_2 0.59 0.60 7.90 9.34 196.04 174.84 0.47 0.21 0.63 0.33 0.61 7.10 5.59
3 clu_3 0.46 0.43 7.57 9.52 189.56 157.76 0.48 0.21 0.60 0.35 0.65 5.42 5.69
4 clu_4 0.37 0.37 8.07 9.49 196.04 153.63 0.08 0.24 0.71 0.34 0.61 3.22 2.43
5 clu_5 0.33 0.32 7.09 8.71 212.82 159.81 -0.10 0.19 0.75 0.30 0.53 3.87 3.63
6 clu_6 0.27 0.25 7.18 8.80 229.06 165.44 NA 0.18 0.78 0.27 0.49 NA NA

The opt component is always present in the output together with the eval component. It

displays the optimal number of clusters for the evaluation criteria from the eval component,
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except for WCM and WCE, where the optimal number of clusters can be determined only by

the elbow method.

R> as.data.frame(hca.G1$opt)

PSFM PSFE BIC AIC BK SI DI CU CI HE HM
1 4 3 3 4 3 4 6 3 3 4 4

Since the number of objects in a dataset is lower than 100, the prox component containing

the dissimilarity matrix is present in the output, where the first six rows and columns in a

matrix form are displayed.

R> as.matrix(hca.G1$prox)[1:6, 1:6]

AGNES BIRCH CACTUS CLARA CLIQUE COOLCAT
AGNES 0.0000 0.6167 1.0000 0.7964 0.8891 0.9072
BIRCH 0.6167 0.0000 0.8406 0.6370 0.7297 0.7478
CACTUS 1.0000 0.8406 0.0000 0.8406 0.4659 0.6536
CLARA 0.7964 0.6370 0.8406 0.0000 0.7297 0.5942
CLIQUE 0.8891 0.7297 0.4659 0.7297 0.0000 0.8406
COOLCAT 0.9072 0.7478 0.6536 0.5942 0.8406 0.0000

The dend component contains all the necessary information for dendrogram creation, and

the call component includes the function call.

The following syntax demonstrates the change of the dissimilarity matrix when the first

variable Type in the dataset has four times higher weight than the remaining variables.

R> hca.G1w <- nomclust(CA.methods, measure = "goodall1",
var.weights = c(1, 0.25, 0.25, 0.25, 0.25))

R> as.matrix(hca.G1w$prox)[1:6, 1:6]

AGNES BIRCH CACTUS CLARA CLIQUE COOLCAT
AGNES 0.0000 0.4235 1.0000 0.8727 0.9307 0.9420
BIRCH 0.4235 0.0000 0.9004 0.7731 0.8311 0.8424
CACTUS 1.0000 0.9004 0.0000 0.9004 0.3007 0.7835
CLARA 0.8727 0.7731 0.9004 0.0000 0.8311 0.4583
CLIQUE 0.9307 0.8311 0.3007 0.8311 0.0000 0.9004
COOLCAT 0.9420 0.8424 0.7835 0.4583 0.9004 0.0000

A graphical comparison of the non-weighted and weighted approach is presented in Subsec-

tion 4.2.3.
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4.2.2 Subsidiary functions

In case one needs to produce only a part of the clustering process, e.g., to calculate a dissimi-

larity matrix for a different clustering algorithm or to evaluate a cluster solution that was not

produced by the nomclust package, one of the available subsidiary functions can be used.

Dissimilarity matrices based on the available similarity measures in the package can be

calculated using the function calls from Table 4.1. The resulting matrices are objects of the dist

class. They can be used as an input for hierarchical clustering functions in other R packages as

well, e.g., the agnes() function in the cluster package or the hclust() function in the stat
package.

A dissimilarity matrix based on the simple matching measure, the reference measure in this

thesis, is obtained using the sm() function.

R> prox.SM <- sm(CA.methods)
R> as.matrix(prox.SM)[1:6, 1:6]

AGNES BIRCH CACTUS CLARA CLIQUE COOLCAT
AGNES 0.0 0.4 1.0 0.6 0.8 0.8
BIRCH 0.4 0.0 0.6 0.2 0.4 0.4
CACTUS 1.0 0.6 0.0 0.6 0.2 0.4
CLARA 0.6 0.2 0.6 0.0 0.4 0.2
CLIQUE 0.8 0.4 0.2 0.4 0.0 0.6
COOLCAT 0.8 0.4 0.4 0.2 0.6 0.0

From the output, it is clear that the SM measure, which does not use any additional informa-

tion about the categorical variables, provided the dissimilarity matrix with many identical

values. This makes the objects challenging to cluster unambiguously with different clustering

algorithms, e.g., hclust() vs. agnes().

Sometimes, the use of an own-calculated dissimilarity matrix is necessary. The nomprox()
function can be used in such a situation. It enables a user to run hierarchical clustering based

on a provided dissimilarity matrix and, if the original dataset is available, to calculate a unique

set of evaluation criteria available in the nomclust package. It has the following syntax.

R> nomprox(diss, data = NULL, method = "average",
clu.high = 6, eval = TRUE, prox = 100)

The diss argument stands for a dissimilarity matrix either of a class matrix or dist. The

argument data represents the data from which the dissimilarity matrix was calculated. It is

not mandatory for the cluster partitions calculation, but it is necessary for evaluation criteria
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calculation. The method, clu.high, eval, and prox arguments work in the same way as in

the nomclust() function.

Hierarchical clustering based on the already calculated dissimilarity matrix of the SM measure

and the original dataset can be performed using the following syntax.

R> hca.SM <- nomprox(diss = prox.SM, data = CA.methods)

The resulting object contains mem, eval, opt, dend, prox and call components. For instance,

the cluster membership variables in the form of a data.frame can be obtained using the

following syntax.

R> clu.SM <- as.data.frame(hca.SM$mem)
R> head(clu.SM)

clu_2 clu_3 clu_4 clu_5 clu_6
1 1 1 1 1 1
2 2 2 2 2 2
3 2 2 3 3 3
4 2 2 2 2 2
5 2 2 3 3 3
6 2 2 2 2 2

In certain situations, the need may arise to apply a set of evaluation criteria from the nomclust
package to cluster membership partitions obtained by different clustering algorithms, e.g.,

LCA or k-modes. The evalclust() function can be used for such cases. It has the syntax

expressed below.

R> evalclust(data, clusters, diss = NULL)

The data argument represents the dataset used for clustering, the clusters argument stands

for a data.frame or a list with cluster membership partitions, and the optional diss argument

denotes the dissimilarity matrix for the objects in the dataset.

The output of the evalclust() function is the eval component with a set of evaluation

criteria, the opt component with the optimal number of clusters based on these criteria,

and the call component with the function call. Suppose the dissimilarity matrix is not

defined in the diss argument. In that case, the function does not provide outcomes for the

distance-based criteria SI and DI, as demonstrated in the following example.
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R> eval.SM <- evalclust(CA.methods, clu.SM)
R> as.data.frame(eval.SM$eval)

names WCM WCE PSFM PSFE BIC AIC BK CU CI HE HM
1 clu_1 0.83 0.85 NA NA 226.39 215.79 NA NA NA 6.01 5.12
2 clu_2 0.66 0.65 5.12 6.01 212.53 191.32 0.74 0.23 0.44 1.66 1.73
3 clu_3 0.60 0.58 3.51 3.93 229.73 197.92 -0.90 0.21 0.37 12.51 9.87
4 clu_4 0.38 0.34 6.62 8.23 202.95 160.54 0.95 0.31 0.57 2.93 2.16
5 clu_5 0.34 0.29 5.79 7.49 219.74 166.73 0.13 0.27 0.50 1.99 1.72
6 clu_6 0.31 0.27 5.15 6.71 240.70 177.09 NA 0.24 0.45 NA NA

R> as.data.frame(eval.SM$opt)

PSFM PSFE BIC AIC BK CU CI HE HM
1 4 4 4 4 4 4 4 2 5

When comparing the outputs for the G1 and SM similarity measures on this dataset, it seems

that WCM and WCE criteria variability decreases faster by G1, suggesting that the clusters of

the G1 measure are more homogeneous. On the other hand, the recommended numbers of

clusters in the opt component are more consistent by the SM measure, where most of the

evaluation criteria prefer the four-cluster solution.

4.2.3 Graphical functions

Graphical outputs can help a researcher choose the optimal number of clusters or evaluate the

quality (and interpretability) of the created clusters. The nomclust package offers two graph-

ical functions, one for evaluation criteria visualization and the second one for dendrogram

creation.

To visualize the evaluation criteria from the eval component, the eval.plot() function with

the following syntax can be used.

R> eval.plot(x, criteria = "all", style = "greys",
opt.col = "red", main = "Cluster Evaluation", ...)

The x argument represents an output of the functions nomclust(), nomprox() or evalclust()
containing the eval and opt components. The argument criteria specifies the evaluation

criteria which are to be visualized. It can be selected by one particular criterion, a vector

of criteria, or all the available criteria. The argument style defines a graphical style of the

produced plots. There are two predefined styles in the nomclust package, namely greys and

dark, but a custom color scheme can be set by a user as a vector with colors of a length four.
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The opt.col argument specifies a color used for the optimal number of clusters identification

and the main argument determines the title of a chart. The symbol ... indicates that it is

possible to use specific graphical arguments from a generic plot() function.

The eval.plot() can be used to obtain graphical representations of the AIC evaluation

criteria from the hca.G1 and hca.SM objects using the syntax below.

R> par(mfrow = c(1,2))
R> eval.plot(hca.G1, criteria = "AIC", main = "G1 measure")
R> eval.plot(hca.SM, criteria = "AIC", main = "SM measure")

1 2 3 4 5 6

G1 measure

AI
C

 v
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s

Number of clusters

Optimal number of clusters based on: AIC

153.62

160.53

167.44

174.35

181.26

188.16

195.07

201.98

208.89

215.80

1 2 3 4 5 6

SM measure
AI
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 v

al
ue

s

Number of clusters

Optimal number of clusters based on: AIC

160.54

166.68

172.82

178.96

185.10

191.24

197.38

203.52

209.66

215.80

Figure 4.1: The optimal number of clusters for HCA with G1 and SM measures based on AIC

Figure 4.1 shows that the lowest value for both similarity measures is four, so the solution

with four clusters should be preferred. One can also examine the cluster solutions with

slightly higher evaluation criteria values, e.g., the three- or five-cluster solutions. A graphical

representation can help a researcher notice minor differences between the values, and thus, it

makes determining the optimal number of clusters easier.

A dendrogram visualizes a hierarchy of clusters, and it can help a researcher decide on the

number of clusters, especially with datasets of smaller sizes. To produce a dendrogram in the

nomclust package, the dend.plot() function is used.

R> dend.plot(x, clusters = "BIC", style = "greys", colorful = TRUE,
clu.col = NA, main = "Dendrogram", ac = TRUE, ...)
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The x argument represents an output of the functions nomclust() or nomprox() containing

the dend component. The clusters argument determines the number of clusters displayed

in a dendrogram. It can be either set as a number or as a name of the evaluation criterion

if the eval and opt components are present in the output. The style and main arguments

work in the same way as by the eval.plot() function. A logical argument colorful specifies

if the output will be colorful or black and white. An optional argument clu.col allows a

researcher to apply user-defined colors to distinguish clusters in a dendrogram. The ac
argument indicates if the value of an agglomerative coefficient from the cluster package is

displayed below the dendrogram.

The dend.plot() function is demonstrated on a comparison of the four-cluster solutions

provided by the G1 and SM measures.

R> dend.plot(hca.G1, clusters = 4, main = "G1 measure")
R> dend.plot(hca.SM, clusters = 4, main = "SM measure")
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Figure 4.2: Comparison of dendrograms for the G1 and SM measures

Figure 4.2 shows that clusters of SM are better separated, but by G1, they seem more meaning-

ful. Regarding the G1 clusters, the first one contains the hierarchical clustering methods.

The second one comprises the majority of partitioning methods. The third one includes

the clustering algorithms primarily determined for the mixed-type data. The fourth cluster

consists of clustering methods based on grid and density. Most of the clusters provided by

the SM measure do not have a logical structure, despite the higher value of the agglomerative

coefficient.
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Considering Figure 4.2, it is apparent that different similarity measures may lead to substan-

tially different results. Therefore, examining more combinations of similarity measures and

linkage methods is always good. A common practice is finding well-separated clusters that

are meaningful to a researcher. In a small dataset, such as the demonstrated one, displaying

a dendrogram is sufficient. In a large dataset, the created clusters can be characterized by a

series of contingency tables containing the variable categories broken down by the cluster

membership variable.

Another example may be a graphical comparison of the non-weighted and weighted ap-

proaches presented in Subsection 4.2.1. Figure 4.3 visualizes the calculated dissimilarity

matrices using dendrograms. Since the variable Type has four times higher weight in cluster-

ing with the weighted approach, the produced clusters mostly correspond to the categories

of this variable. The first cluster contains only hierarchical methods, the second one the

partitioning methods, the third the model-based methods, and the last the density-based and

grid methods.

R> dend.plot(hca.G1, clusters = 4, main = "G1 (non-weighted)")
R> dend.plot(hca.G1w, clusters = 4, main = "G1 (weighted)")
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Figure 4.3: Comparison of dendrograms for the non-weighted and weighted approach
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4.2.4 Generic functions

The second generation of the nomclust package added support for standard generic func-

tions, such as summary() or print(). They can be applied to the outputs of the functions

nomclust(), nomprox(), or evalclust(), which are of the class nomclust. The range of the

generic function outcomes differs by the number of components in the output. Thus, the

most complex outputs are provided by the nomclust() function, whereas the evalclust()
function usually provides the most limited outcomes.

The summary() function can be used if one wants quick information about the clustering re-

sults. The outcome contains frequency distribution tables for the created numbers of clusters,

so a researcher can see if the cluster sizes are balanced or if there are one-object clusters. The

function also provides the optimal numbers of clusters according to all calculated evalua-

tion criteria and the value of the agglomerative coefficient. The outcome of the summary()
function is shown in the following example.

R > hca.IOF <- nomclust(CA.methods, measure = "iof",
method = "complete", clu.high = 3)

R> summary(hca.IOF)

Sizes of the created clusters:

2 clusters:
1 2
9 15

3 clusters:
1 2 3
9 10 5

Optimal number of clusters based on the evaluation criteria:
PSFM PSFE BIC AIC BK SI

1 2 2 2 3 2 2

Agglomerative coefficient: 0.9685352

The print() function offers all the necessary information for cluster quality evaluation,

namely values of the calculated evaluation criteria, the corresponding optimal numbers of

clusters, and the agglomerative coefficient.

Sometimes, a researcher may need to apply additional functionalities to the obtained cluster-

ing outcomes, often requiring the object of the hclust class as an input. Therefore, the class

of the clustering object can be easily changed by the as.hclust() function. Moreover, we
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introduce the as.agnes() function which transforms a nomclust object into an agnes, twins

object, which is occasionally also required. The introduced function is not generic, but it

works as expected. The use of both functions is shown below.

R> hca.IOF.hclust <- as.hclust(hca.IOF)
R> hca.IOF.agnes <- as.agnes(hca.IOF)

The function plot() applied to the output of the nomclust() or nomprox() functions creates

a basic dendrogram that is suitable for a quick look at the hierarchy of clusters. Compared

to the more complex function dend.plot(), it allows a researcher only to change the chart’s

title.

R> plot(hca.IOF, main = "plot() in nomclust")
R> plot(hca.IOF.hclust, main = "plot() in hclust")

Figure 4.4 depicts the outcomes of the plot() function applied to the objects of the nomclust

and hclust classes.
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Figure 4.4: Outputs of the plot() function applied on the nomclust and hclust objects
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5 Comparison of Similarity Measures
for Categorical Data

This chapter deals with the first goal of this thesis, i.e., the comparison of the similarity

measures for categorical data presented in Introduction. The similarity measures are evaluated

according to their ability to create good-quality clusters in HCA. The analysis aims to determine

in which situations a certain similarity measure forms good-quality clusters and when not.

Therefore, the experiment is performed on 2,700 generated datasets with controlled properties,

such as the number of variables or natural clusters in a dataset.

The chapter is divided into three sections. The first one describes the data generation process

and the generated datasets’ properties. The second one defines the methodology for the

similarity measures evaluation, and the third one contains the conducted experiment.

5.1 Data Generation Process

The generated datasets for the experiment are obtained using the updated gen_object()
function introduced by Šulc (2016), which is based on the genRandomClust() function from

the clusterGeneration R package (Qiu and Joe, 2006) and the discretize() function from

the arules (Hahsler et al., 2015) R package. The function has the following function call:

R> gen_object(n_per_clu = 150, nclu = 4, nvar = 4, ncat = c(3, 3, 3, 3),
dist = 0.34, discretize = "interval", mem = 1),

and it contains seven parameters. The argument n_per_clu sets the cluster size equal for

all generated clusters. The argument nclu specifies the number of original clusters in a

dataset,nvar defines the number of variables in a dataset, ncat specifies the number of cate-

gories for every variable in a dataset. It has a form of a vector, and its length must be equal to

the number of variables. The argument dist defines the distance between two neighboring

clusters from the interval (–1,1). The closer the value is to one, the more separated the clusters

are. The discretize parameter allows a researcher to choose a way of dataset categorization.

The default value “interval” creates equal intervals from the original quantitative values of
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a given variable differing in the number of objects. The value “frequency” creates a given

number of intervals with unequal width, each containing approximately equal number of

objects. The last parameter mem is a logical operator. If this parameter is TRUE, a cluster

membership variable will be added to the generated dataset.

The dataset generation based on the gen_object() function uses a two-step approach. In

the first step, quantitative data with a multidimensional correlation structure reflecting the

given properties (between-cluster distances, the number of clusters, variables, and categories)

is created. In the second step, the variables in datasets are categorized using the equal-

width intervals approach, which constructs more naturally-looking datasets. This generation

approach was already used by Šulc (2016) and Šulc and Řezanková (2019). The datasets

generated this way contain, in fact, ordinal variables. Fortunately, this is not a problem for

the planned experiment since the similarity measures for categorical data do not consider the

order of categories.

For the experiment, 27 different dataset settings were used; see Figure 5.1. All the datasets

were generated with four original clusters. The reason is that most internal evaluation criteria

depend on the number of clusters; thus, their values would be incomparable by different

numbers of clusters. Three minimal between-cluster distances (0.21, 0.34, 0.50)1 were used,

representing intersecting, partly intersecting, and almost non-intersecting clusters. In this

thesis, these distances are also referred to as small, medium, and large minimal between-

cluster distances. Next, the datasets were generated with three different numbers of variables

(4, 7, 10) covering the typical range of clustering of categorical datasets. Finally, there are three

different numbers of categories (3, 5, 7) in the generated datasets illustrating simple, medium,

and complex dataset structure. The number of objects in generated datasets was firmly set to

600 cases. Each dataset setting combination was replicated one hundred times to ensure the

robustness of the obtained results. In total, this makes 2,700 generated datasets used for the

analysis.

number of categories

number of variables

between-cluster distance

number of clusters

replications 100

4

0.21

4

3 5 7

7 10

0.34 0.50

Figure 5.1: Dataset generation scheme for the first experiment

1Due to some information loss by categorization of the dataset, the values of the dist argument are higher than
the recommended ones for quantitative data.
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5.2 Research Methodology

The examined similarity measures are compared and evaluated based on their clustering

performance (ability to produce good-quality clusters) in HCA. It implies that the measures

are compared indirectly using the obtained clusters’ quality measured by internal evaluation

criteria. When dealing with a large number of HCA outputs2, a need to process and interpret

such an amount of data in a synoptic way arises. This thesis assesses the examined similarity

measures in two different ways. The first represents a relative comparison based on the mean

ranked scores methodology proposed by Šulc and Řezanková (2019), and the second focuses

on absolute evaluation criteria differences expressed by boxplots.

Mean ranked scores methodology

The mean ranked scores methodology assesses the created clusters based on the mean ranked

scores (MRS) of the internal evaluation criteria that are either variability- or likelihood-based3.

In a given dataset, values of these criteria can be compared not only with their values in

different cluster solutions of a certain similarity measure but also with their values in a par-

ticular cluster solution for different similarity measures. However, the values of variability-

and likelihood-based criteria are non-standardized, so they are incomparable if the datasets’

properties, such as the dataset’s size, differ. That is why the constant number of objects was

used in the datasets used in the experiment. Then, using MRS ensures comparable and easily

interpretable internal evaluation criteria outcomes.

The MRS methodology consists of two steps. In the first one, a series of cluster partitions

based on the first dataset is produced by HCAs with all the examined similarity measures,

and the resulting clusters are then evaluated using a given internal criterion. The evaluation

criterion’s outcome scores are then ranked from the best to the worst (the direction depends

on the evaluation criterion used) so that the best criterion value is ranked as one. In the same

manner, MRS for the other datasets are obtained. In the second step, MRS are averaged over

the number of replications and other properties that are not of interest in the given analysis.

For example, to get MRS broken down by the number of variables, it is necessary to average

MRS over all other properties that are not of interest (the number of replications, minimal

between-cluster distances, and the number of categories). The resulting MRS are considered

the main output that can be displayed as an easily interpretable table. The lower the MRS of a

similarity measure, the better its clustering performance is.

The MRS methodology enables a researcher to order the examined similarity measures re-

garding their clustering performance from the best one to the worst one. However, it does

not provide information about the extent to which the similarity measures differ. Thus, the

differences among the similarity measures are evaluated relatively. Another issue is a limited

2In the experiment, 43,200 cluster membership partitions with four clusters is used (27 dataset types × 100
replications × 16 similarity measures).

3Distance-based criteria depend on the used similarity measure, see Chapter 6.
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way of expressing the variability of the ranked scores. One can use a standard deviation, as it

was performed by Šulc and Řezanková (2019), but its value is difficult to interpret. These issues

are solved by the second way of the similarity measures evaluation by which the differences

among the similarity measures are evaluated absolutely using the boxplots.

Boxplot assessment

Displaying the values of the evaluation criterion broken down by the examined similarity

measures is a simple yet efficient way to show the absolute differences among the similarity

measures represented by median values of a given criterion and also the variability of the

criterion values expressed by the inter-quartile range (IQR). Moreover, the criterion values

can be further broken down by a specific dataset’s property, such as the number of variables.

This way, the resulting boxplots can reveal the differences between different levels of such a

property. If the differences are substantial, dependence on a specific dataset’s property can be

assumed

The mean ranked scores methodology and boxplot assessment analyze the similarity measures

from both relative and absolute comparison perspectives. Thus, they complement each other

well, which will be utilized in the experiment.

Evaluation criteria used

In the experiment performed in this thesis, the PSFE and CU criteria are used. The entropy-

based PSFE criterion was chosen since it enables a direct comparison with the previous

studies by Šulc (2016) and Šulc and Řezanková (2019), where this criterion was also used. The

mutability-based CU criterion was chosen because it is one of the few widely known internal

evaluation criteria that are correctly used for categorical clustering assessment. It is used in

the COBWEB algorithm (Fisher, 1987) for the conceptual clustering, and also in many papers,

e.g., (Murakoshi and Fujikawa, 2016), and books, e.g., (Witten et al., 2016), dealing with the

categorical data clustering. Thus, using this criterion will allow many researchers to put its

results in the context of their experience with this criterion.

Both the used criteria are variability-based, and they express the cluster quality in a non-

standardized way, i.e., their maximal values are not the same. Based on Eq. (3.10) and Eq.

(3.11), values of PSFE depend on the number of clusters k and the number of observations

n, and the values of CU on the number of clusters k. Thus, in order to be able to compare

their values across different datasets, the clustered datasets must have the same number of

objects, and the evaluation criteria values must be for the same number of clusters (four in

this experiment). These conditions are satisfied in the generated datasets presented in Section

5.1.
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Experiment design

For each of the 2,700 generated datasets (see Section 5.1), a set of dissimilarity matrices was

computed according to the 16 examined similarity measures for categorical data presented in

Chapter 2. Next, HCA with ALM, CLM, and SLM for the four-cluster solution was performed

on each dissimilarity matrix. Each HCA solution was evaluated by the evaluation criteria

PSFE and CU presented in Section 3.2. The calculations were performed using the nomclust
package for R, presented in Chapter 4.

The similarity measures are compared using the evaluation criteria values in the four-cluster

solution, which corresponds to the original number of clusters in the generated datasets.

For the comparison, mean ranked scores methodology and boxplot assessment presented in

Section 5.2 are used. The described procedure offers an efficient approach to comparing a

large number of similarity measures, both in relative and absolute ways. All the scripts used

in the experiment are available as an electronic appendix, which is described in Table II in

Appendix B.

5.3 Experiment

The experiment aims to determine in which situations a certain similarity measure creates

good-quality clusters and when not. Many dataset properties can influence the clustering

performance of a similarity measure, e.g., the number of variables, categories, or the minimal

distance of clusters in a dataset. Some researchers’ decisions can also influence the quality of

clusters, mainly the choice of the linkage method.

Compared to the research performed by Šulc (2016), the current experiment applies a new way

of similarity measures evaluation, the boxplot assessment. Additionally, mutual interactions

between the linkage methods and similarity measures are investigated, which results in

recommendations for researchers which combination of similarity measures and linkage

methods works well for a dataset with specific properties. Moreover, the influence of different

minimal between-cluster distances is explored in this thesis. Next, more similarity measures,

a new evaluation criterion, and a substantially larger number of datasets are used in the

experiment. Finally, the current experiment provides full results for all three linkage methods

recommended for categorical data.

The experiment is spread across five subsections. The first one examines the influence of

the linkage method on cluster quality. The following three subsections analyze the similarity

measures regarding the quality of the created clusters separately for each linkage method. The

last subsection recommends which combinations of similarity measures and linkage methods

suit a given dataset with specific properties.
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5.3.1 Linkage methods comparison

Table 5.1 and Table 5.2 present the mean ranked scores (MRS) for the examined similarity

measures in three linkage methods (LINK), namely ALM, CLM, and SLM, based on the PSFE

and CU evaluation criteria. The criteria measure the relative clustering performance of the

examined similarity measures. Thus, a given mean ranked score is not comparable across

different linkage methods in absolute terms. Since 16 similarity measures are assessed in

the experiment, the average mean ranked score is 8.5. Thus, the measures evaluated by the

lower score (represented by green shades) provide better clusters than the average similarity

measure in a given linkage. On the other hand, the measures with the high MRS (represented

by purple shades) create poor-quality clusters.

MRS based on the PSFE and CU criteria do not differ substantially, suggesting that the quality

of the created clusters is measured well by these two criteria. Moreover, PSFE provides the

same MRS outputs as the criteria BIC, AIC, and CI that are not used in this experiment, which

further increases the validity of the results.

Table 5.1: MRS for three linkage methods based on PSFE

LINK AN BU ES G1 G2 G3 G4 GA IOF LIN LIN1 OF SM SV VE VM
ALM 11.7 10.8 8.0 3.4 8.5 4.4 15.7 12.5 7.8 5.5 12.4 9.7 8.1 4.8 6.2 6.3

CLM 12.0 6.4 11.6 10.2 8.3 10.2 9.9 9.8 6.3 6.4 7.7 5.4 11.8 6.9 6.6 6.6

SLM 6.5 6.6 6.6 10.1 9.7 10.5 9.5 8.9 9.0 9.5 11.2 7.1 6.1 11.8 6.3 6.4

Table 5.2: MRS for three linkage methods based on CU

LINK AN BU ES G1 G2 G3 G4 GA IOF LIN LIN1 OF SM SV VE VM
ALM 12.6 11.5 7.7 3.8 8.0 4.6 15.6 11.9 6.7 5.6 12.1 10.2 7.8 5.7 6.1 6.2

CLM 12.7 7.9 11.0 10.0 7.8 10.0 8.8 8.7 5.2 6.5 8.8 6.7 11.3 8.0 6.3 6.4

SLM 7.1 7.5 6.4 10.5 9.3 10.9 8.4 8.7 8.2 10.4 10.9 7.8 5.9 11.6 6.2 6.3

Both the tables show vast differences in MRS between the linkage methods by most of the sim-

ilarity measures indicating that many similarity measures perform relatively well by a specific

linkage method while they create poor-quality clusters in other linkages. The exceptions are

the VM and VE measures that perform well (MRS are low) in all the linkage methods and the

G2 measure that creates the average-quality clusters (MRS are around 8.5). Thus, it is clear

that the performance of the similarity measures is closely related to the linkage method used.

Since the linkage method is not a dataset property but a user-defined setting of the analysis,

the results for different linkages will be analyzed separately in the following subsections.

In ALM, G1 produces the best clusters (with the lowest MRS) according to both evaluation

criteria. It is closely followed by G3 and further by LIN and SV measures whose order differs

according to the used criterion. The measures VE and VM, proposed by Šulc (2016), also

perform very well. The measures IOF, ES, and SM also create better clusters than the average.

The rest of the measures form clusters of below-average quality. The G4 measure produces the

worst clusters with the mean ranked score equal to 15.7 out of the maximum of 16.
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Figure 5.2: Boxplots of the PSFE values for three linkage methods
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Figure 5.3: Boxplots of the CU values for three linkage methods
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In CLM, IOF and OF create the best clusters, followed by the LIN measure. VM, VE, and BU

are also well-performing measures. The rest of the measures produce clusters of moderate

or poor quality. When comparing MRS of CLM with ALM, it is evident that some measures

improved their relative clustering performance, e.g., BU or G4. On the other hand, some

measures perform much worse. The most apparent is the drop by the G1 and G3 measures

that form the best clusters in ALM.

In SLM, the reference measure SM creates the best clusters. It is closely followed by VM,

VE, and ES. The outputs of SLM are the most distinct from the other two linkages. The

largest differences are by the measures AN and BU, which produced good clusters in SLM but

mediocre ones in the other linkages.

The relative comparison of similarity measures conducted in the previous paragraphs enables

a researcher to order the examined similarity measures according to their suitability in a given

dataset property, such as the used linkage. However, it does not show absolute differences

between the dataset properties. Therefore, the boxplot assessment is used. Figure 5.2 and

Figure 5.3 show the boxplots based on the original PSFE and CU criteria values. Three boxplots

for each similarity measure are present according to three linkage methods. This way, each

boxplot is based on 2,700 evaluation criteria values. The colorful boxes in the charts represent

IQRs, i.e., the middle 50% of evaluation criteria values, and the lines in the boxes are the

median criteria values. The main characteristics of the boxplots are presented in Table III and

Table IV in Appendix C.

Both the charts show huge differences between all three linkage methods. According to both

PSFE and CU criteria, most of the examined similarity measures produce the best clusters

by ALM. The only exception is the G4 similarity measure which performs poorly overall. The

variability expressed by IQR is usually the largest in ALM compared to the other two linkage

methods, and it is very similar across the similarity measures (with the exceptions of G4 and

LIN1). On the other hand, SLM generally creates poor-quality clusters with the median values

of the criteria close to zero. The boxplots of SLM often contain the lowest values, and they do

not overlap with the other linkages, which indicates that SLM rarely outperforms them. The

outputs of CLM are in between ALM and SLM; however, they are more similar to ALM than to

SLM.

5.3.2 Average linkage method

This subsection deals with the influence of different minimal between-cluster distances,

numbers of variables, and numbers of categories on the clustering performance quality of the

examined similarity measures when ALM is used.

First, the minimal between-cluster distances (DIST) with values 0.21, 0.34, and 0.5 represent-

ing the small, medium, and large DIST in generated datasets are examined. The aim is to

determine if the performance of the examined similarity measures to provide good-quality
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clusters depends on how much the clusters in the datasets overlap. Table 5.3 and Table 5.4

provide MRS for the three examined DIST values based on the PSFE and CU. The DIST values

are ordered descendingly since the datasets with the largest ones are the easiest to cluster.

The outputs show the relative differences in MRS between the three DISTs. This result indicates

that most of the examined similarity measures perform consistently across datasets with

different extents of clusters overlapping, e.g., the well-performing G1 and G3 measures, but

also the poorly-performing G4 measure. Thus, by these measures, there is no necessity to

analyze the overlaps of clusters before applying a particular similarity measure in ALM.

However, some similarity measures improve their relative clustering performance with the

decreasing DIST. For instance, SV performs exceptionally well according to the PSFE crite-

rion. Smaller improvements with the decreasing DIST can also be observed in the LIN and

LIN1 measures. Some measures, such as SM, ES, or BU, show slightly worsening clustering

performance with decreased DIST. However, these deteriorations are almost negligible.

Table 5.3: MRS for three minimal between-cluster distances based on PSFE (ALM)

DIST AN BU ES G1 G2 G3 G4 GA IOF LIN LIN1 OF SM SV VE VM
0.50 12.3 10.3 7.4 3.7 7.9 4.6 15.8 11.7 7.4 5.8 13.9 9.2 7.5 6.3 5.8 6.2

0.34 11.6 10.5 8.2 3.3 8.6 4.3 15.8 12.8 7.9 5.4 12.8 9.5 8.2 4.7 6.2 6.1

0.21 11.3 11.7 8.5 3.3 9.0 4.3 15.6 13.1 8.0 5.2 10.5 10.3 8.5 3.5 6.5 6.7

Table 5.4: MRS for three minimal between-cluster distances based on CU (ALM)

DIST AN BU ES G1 G2 G3 G4 GA IOF LIN LIN1 OF SM SV VE VM
0.50 12.7 10.8 7.2 4.0 7.5 4.7 15.7 11.3 6.8 6.0 13.5 9.6 7.3 6.6 6.0 6.3

0.34 12.6 11.2 7.9 3.7 8.2 4.5 15.7 12.1 6.8 5.4 12.3 10.1 7.9 5.5 6.1 6.1

0.21 12.6 12.5 7.9 3.6 8.3 4.5 15.4 12.2 6.5 5.3 10.5 11.0 8.1 5.0 6.3 6.4

Analysis of the absolute differences of the evaluation criteria using the boxplots occurs in

Figure 5.4 and Figure 5.5, where each boxplot is based on 900 evaluation criteria values. Both

charts show that all the examined similarity measures provide the best clusters by the largest

DIST of 0.5 and the worst by the smallest DIST of 0.21. This conclusion is supported by almost

non-overlapping bars in the boxplots (representing IQRs) by most measures, especially by the

CU criterion. The variability of the outputs is the highest by the largest DIST and the lowest by

the smallest DIST. Concerning the similarity measures, G4 creates the worst clusters from all

examined measures. Even by the largest DIST, it cannot compete with the small and medium

DISTs of other explored similarity measures. The numeric characteristics of both the boxplots

are presented in Table V and Table VI.
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Figure 5.4: Boxplots of the PSFE values for three minimal between-cluster distances (ALM)
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Figure 5.5: Boxplots of the CU values for three minimal between-cluster distances (ALM)
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Second, the influence of three different numbers of variables (VAR) on the cluster quality by 16

similarity measures is explored. These numbers of variables, namely (4, 7, 10), were chosen to

represent small, medium, and large numbers of the clustered variables in a typical HCA task.

Table 5.5 and Table 5.6 show MRS broken down by the numbers of variables for the PSFE and

CU evaluation criteria, and they both describe the cluster quality in the same way. The outputs

indicate that most similarity measures perform consistently across the examined variable

numbers in ALM. The exceptions are the LIN and SV measures that substantially improve their

relative clustering performance with an increasing number of variables. To a smaller extent,

this type of behavior can be observed by the IOF measure. On the other hand, deterioration of

the cluster quality with the increasing VAR can be expected by OF.

Table 5.5: MRS for three numbers of variables based on PSFE (ALM)

VAR AN BU ES G1 G2 G3 G4 GA IOF LIN LIN1 OF SM SV VE VM
4 11.1 9.0 7.9 3.7 8.4 4.5 15.8 12.4 9.1 7.6 12.9 7.9 8.0 5.9 6.0 5.8

7 11.9 11.6 8.0 3.3 8.4 4.4 15.7 12.5 7.2 5.0 12.2 10.3 8.0 4.8 6.1 6.6

10 12.1 12.0 8.2 3.2 8.7 4.3 15.7 12.6 7.1 3.8 12.1 10.8 8.3 3.9 6.5 6.7

Table 5.6: MRS for three numbers of variables based on CU (ALM)

VAR AN BU ES G1 G2 G3 G4 GA IOF LIN LIN1 OF SM SV VE VM
4 12.1 10.0 7.2 4.3 7.5 4.9 15.7 11.4 7.4 7.7 13.1 8.7 7.4 7.2 5.7 5.5

7 12.8 12.0 7.8 3.6 8.1 4.5 15.6 12.1 6.2 5.1 11.7 10.7 7.7 5.5 6.2 6.5

10 13.0 12.4 8.1 3.4 8.4 4.4 15.5 12.1 6.3 3.8 11.5 11.3 8.2 4.4 6.5 6.7

Figure 5.6 and Figure 5.7 represent the absolute differences of the used evaluation criteria

broken down by the number of variables. In this analysis, the outputs of the PSFE and CU

criteria differ extensively, which reduces their credibility in describing the absolute differences

between the groups. Since there is no way to determine which of the criteria assesses the

clusters in a better way, both outputs will be described separately.

According to PSFE, the best clusters are obtained when four (or a smaller) number of variables

is used. Then, with the increasing VAR, the absolute clustering performance of all similarity

measures decreases. The highest variability of outputs is when four variables are clustered,

and the lowest is when ten variables are clustered.

On the contrary, the CU output shows an entirely different picture, where the created clusters

are of similar quality by a majority of similarity measures by all three numbers of variables.

The exception is G4 which performs poorly overall in ALM. Smaller differences can also be

observed by specific similarity measures, e.g., G1, G3, or LIN. The result suggests that VAR does

not influence the quality of the obtained clusters in a large scope. The numeric characteristics

of both the boxplots are presented in Table VII and Table VIII in Appendix C.
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Figure 5.6: Boxplots of the PSFE values for three variable numbers (ALM)

0

100

200

AN BU ES G1 G2 G3 G4 GA IOF LIN LIN1 OF SM SV VE VM
similarity measure

PS
FE

VAR
4

7

10

Figure 5.7: Boxplots of the CU values for three variable numbers (ALM)
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Third, the influence of the number of categories (CAT), namely 3, 5, 7, of the clustered variables

on the cluster quality was examined. The selected CAT levels cover the typical ranges of

categories used in HCA tasks. Table 5.7 and Table 5.8 show MRS broken down by three CAT

levels representing simple, medium, and complex dataset structures.

The outputs of both tables are in accordance, and they show that most of the similarity

measures perform constantly across three numbers of variables in ALM. For instance, LIN

performs well, no matter the number of categories. The most remarkable improvement of

clustering performance with the increasing CAT is achieved by the measures ES and SM. These

two measures perform almost identically, especially if the number of categories is constant.

Then, their values have a monotonous relationship in the first step of their calculation; see

their equations in Section 2.1. To a smaller extent, the measures IOF and SV also improve their

relative performance when the number of categories is large.

On the contrary, the highest worsening of MRS is by the AN and OF measures, whose created

clusters quality is overall poor in ALM. It is worth mentioning that G1 and G3 slightly deterio-

rate their clustering performance with the increasing CAT, but they still work outstandingly in

ALM.

Table 5.7: MRS for three numbers of categories based on PSFE (ALM)

CAT AN BU ES G1 G2 G3 G4 GA IOF LIN LIN1 OF SM SV VE VM
3 8.7 10.3 9.6 3.2 9.0 4.0 15.9 11.9 8.6 5.7 11.8 8.5 9.7 5.6 6.8 6.6

5 12.3 11.4 7.7 3.2 8.6 4.5 15.7 12.9 7.6 5.1 12.4 10.1 7.6 4.5 6.0 6.4

7 14.1 10.9 6.8 3.9 7.9 4.8 15.6 12.7 7.2 5.6 13.1 10.3 7.0 4.4 5.7 6.0

Table 5.8: MRS for three numbers of categories based on CU (ALM)

CAT AN BU ES G1 G2 G3 G4 GA IOF LIN LIN1 OF SM SV VE VM
3 10.0 10.9 9.2 3.3 8.6 4.0 15.9 11.4 7.9 5.6 11.4 9.2 9.3 6.0 6.8 6.5

5 13.2 12.0 7.3 3.7 8.0 4.7 15.6 12.2 6.3 5.2 12.0 10.7 7.2 5.5 6.0 6.3

7 14.7 11.5 6.6 4.3 7.4 5.0 15.4 12.0 5.8 5.9 12.8 10.8 6.8 5.5 5.6 5.9

Figure 5.8 and Figure 5.9 presents the assessment using the boxplots. This time, the PSFE

and CU criteria results are in accordance. The obtained results are not surprising. The best

clusters for all the similarity measures are created if the clustered variables contain three

categories representing the simple dataset structure. The clustering with five categories always

provides higher evaluation criteria scores than the clustering with seven categories. However,

the differences are much smaller compared to the clustering with three categories.

Regarding the particular similarity measures, one can notice the inferior performance of the

G4 measure that creates the worst clusters among all similarity measures by distance. Table IX

and Table X in Appendix C contain the numeric characteristics of both the boxplots.
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Figure 5.8: Boxplots of the PSFE values for three numbers of categories (ALM)
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Figure 5.9: Boxplots of the CU values for three numbers of categories (ALM)
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5.3.3 Complete linkage method

In CLM, a different set of similarity measures produces good-quality clusters than in ALM, as

was demonstrated in Subsection 5.3.1. BU, GA, IOF, and G4 measures perform substantially

better than in ALM. On the contrary, some clustering performances of some measures got

worse, such as by ES, SM, G1, and G3. Still, there are some well-performing measures in both

the linkages, namely LIN, VE, and VM.

Table 5.9 and Table 5.10 show MRS for 16 similarity measures broken down by three DIST

levels according to the criteria PSFE and CU. Both criteria provide very similar results that

differ only a little. Generally, the relative clustering performance of the examined similarity

measures is not affected to a great extent by the decreasing DIST in CLM, but there are some

differences among them. The measures G4, GA, and G2 perform relatively better by the small

DIST but still do not belong to the best similarity measures. Smaller improvements also occur

by the measures VE, VM, and IOF (according to CU) that generally construct good clusters in

CLM. On the other hand, the measures ES, SM, G1, and G3 worsen their relative clustering

performance with the decreasing DIST.

Table 5.9: MRS for three minimal between-cluster distances based on PSFE (CLM)

DIST AN BU ES G1 G2 G3 G4 GA IOF LIN LIN1 OF SM SV VE VM
0.50 12.3 6.4 10.6 9.1 8.8 9.3 11.3 10.4 6.0 5.8 8.7 5.2 11.0 6.7 7.1 7.2

0.34 12.2 5.8 12.0 10.3 8.3 10.5 9.8 9.9 6.4 6.4 7.6 4.9 12.0 7.0 6.4 6.4

0.21 11.5 6.8 12.2 11.0 7.9 10.8 8.6 9.1 6.4 6.8 6.9 6.1 12.4 7.1 6.1 6.2

Table 5.10: MRS for three minimal between-cluster distances based on CU (CLM)

DIST AN BU ES G1 G2 G3 G4 GA IOF LIN LIN1 OF SM SV VE VM
0.50 12.5 7.4 10.3 9.0 8.4 9.2 10.4 9.7 5.5 6.0 9.5 6.2 10.8 7.1 7.0 7.1

0.34 12.8 7.3 11.4 10.2 7.8 10.4 8.6 8.7 5.3 6.6 8.8 6.2 11.5 8.0 6.2 6.2

0.21 12.8 8.9 11.4 10.7 7.1 10.5 7.4 7.6 4.8 6.9 8.3 7.7 11.6 8.8 5.8 5.9

Figure 5.10 and Figure 5.11 express the absolute differences between the similarity measures

based on PSFE and CU using the boxplots. Compared to ALM, see Figure 5.4 and Figure 5.5,

there are generally smaller differences between the three DIST levels in CLM. When taking a

closer look, one can observe that the cause lies in the usually lower clustering performance of

CLM with lower values of both evaluation criteria. There are also generally smaller differences

between the similarity measures than by ALM, so there is no completely unsuitable similarity

measure for clustering. Both the charts express the relationships similarly, but the chart with

the CU values presents the differences more clearly. The best-performing measures in CLM

are IOF, LIN, and BU. They all have high median values with relatively small IQRs in all three

examined DIST levels. The worst clusters create AN, ES, and a reference measure SM. Thus,

researchers should avoid using the SM measure with CLM when clustering the categorical

data. Table XI and Table XII in Appendix C contain the numeric characteristics of both the

boxplots.
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Figure 5.10: Boxplots of the PSFE values for three minimal between-cluster distances (CLM)
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Figure 5.11: Boxplots of the CU values for three minimal between-cluster distances (CLM)
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Table 5.11 and Table 5.12 present MRS based on PSFE and CU for the 16 similarity measures

broken down by the VAR levels in CLM. Compared to ALM, where the clustering performance

of the similarity measures was mostly constant (see Table 5.5 and Table 5.6), CLM shows

interesting dependencies of the examined measures on the number of the clustered variables.

Again, both the table outputs are in accordance, suggesting the relevance of the results.

Overall, the universal similarity measure in CLM is IOF which performs well across different

numbers of variables. The measures LIN, OF, BU, and SV improve their relative clustering

performance with the increasing number of variables, most of them to a large extent. Thus,

they are suitable for datasets with many categorical variables.

On the contrary, the measures VE and VM create good-quality clusters when the number

of clustered variables is four. When VAR increases, their relative clustering performance

continuously deteriorates. Still, they provide the average-quality clusters by datasets with

ten variables. The measures G2, GA, G4, and AM also deteriorate the created clusters’ quality

with the increasing VAR levels, but they perform poorly with lower VAR levels. The reference

measure SM and further ES form constantly inferior clusters in CLM.

Table 5.11: MRS for three variable numbers based on PSFE (CLM)

VAR AN BU ES G1 G2 G3 G4 GA IOF LIN LIN1 OF SM SV VE VM
4 11.4 9.3 11.1 11.0 6.9 11.0 9.3 8.5 6.6 7.9 7.5 8.1 11.4 8.4 3.9 3.9

7 12.0 5.2 12.5 10.4 8.6 10.5 9.4 9.9 6.7 6.0 7.2 4.4 12.7 6.4 6.9 7.1

10 12.5 4.6 11.2 9.0 9.5 9.1 11.0 11.0 5.5 5.3 8.5 3.8 11.3 6.0 8.8 8.8

Table 5.12: MRS for three variable numbers based on CU (CLM)

VAR AN BU ES G1 G2 G3 G4 GA IOF LIN LIN1 OF SM SV VE VM
4 11.5 11.1 10.0 10.7 6.3 10.7 8.2 7.3 5.6 8.4 9.2 9.9 10.3 9.3 3.8 3.8

7 12.8 6.7 12.1 10.2 8.0 10.4 8.3 8.7 5.5 6.0 8.3 5.6 12.4 7.6 6.6 6.8

10 13.8 5.7 10.9 8.9 9.0 9.0 9.9 10.1 4.6 5.0 9.0 4.6 11.1 7.0 8.7 8.6

Figure 5.12 and Figure 5.13 show the absolute differences between evaluation criteria values

broken down by the VAR levels for all the examined similarity measures in CLM. Similarly, as

by ALM in Figure 5.6 and Figure 5.7, the evaluation criteria differ in the way they assess the

cluster quality. The PSFE criterion always prefers the four-variable solution to the solutions

with seven and ten variables that are more similar regarding their medians and IQRs. One can

observe a superior performance of the VE and VM measures in datasets with four clustered

variables compared to the rest of the similarity measures and also competitively good cluster

quality by OF and BU in the higher VAR levels. Still, most of the PSFE values are lower than by

ALM, and thus, ALM should be preferred to CLM unless there is a specific reason to use CLM.

The CU criterion generally expresses the exact relationships between the similarity measures

as PSFE, but it proceeds differently with different numbers of variables. Then, the similarity

measures performing well by higher VAR levels have a higher value of CU. This way, the

outputs correspond more to the relative comparison presented in Table 5.11 and Table 5.12.
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The numeric characteristics of both the boxplots are shown in Table XIII and Table XIV in

Appendix C.

Figure 5.12: Boxplots of the PSFE values for three variable numbers (CLM)
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Figure 5.13: Boxplots of the CU values for three variable numbers (CLM)
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Table 5.13 and Table 5.14 contain MRS based on PSFE and CU for the examined similarity

measures broken by the CAT levels in CLM. The similar MRS values in both tables indicate

that the PSFE and CU criteria assess the created clusters similarly.

The results show that the number of categories is an influential factor for the cluster quality

in CLM. The measures OF, VE, and VM create generally good clusters in CLM. However, their

relative clustering performance slightly decreases with the increasing complexity of a dataset

represented by increasing CAT levels.

The measures IOF, LIN, SV, LIN1, BU, and G4 improve their relative clustering performance

with the increasing number of categories. While most of the mentioned measures generally

perform well in CLM, the behavior of the G4 measure is surprising. It performs poorly in

datasets with three categories by the clustered variables, but it creates clusters of outstanding

quality in complex datasets containing variables with many categories.

The rest of the measures do not provide good-quality clusters. The G1, G2, and G3 measures

perform relatively well in datasets with a simple structure represented by three categories. The

ES, SM, and AN measures generally create poor-quality clusters in CLM.

Table 5.13: MRS for three numbers of categories based on PSFE (CLM)

CAT AN BU ES G1 G2 G3 G4 GA IOF LIN LIN1 OF SM SV VE VM
3 10.3 7.4 9.8 7.1 7.6 7.4 15.1 9.2 7.7 8.9 9.9 5.2 9.8 9.2 5.8 5.7

5 12.5 5.7 12.5 11.1 8.5 11.2 8.5 10.8 5.7 5.6 7.2 5.2 12.5 5.7 6.5 6.8

7 13.1 6.0 12.5 12.3 8.8 12.1 6.1 9.5 5.3 4.7 6.0 5.8 13.1 5.9 7.4 7.4

Table 5.14: MRS for three numbers of categories based on CU (CLM)

CAT AN BU ES G1 G2 G3 G4 GA IOF LIN LIN1 OF SM SV VE VM
3 11.5 9.0 9.2 7.0 7.2 7.3 14.9 8.5 7.0 8.7 10.0 6.2 9.3 9.7 5.5 5.4

5 13.2 7.1 12.0 11.0 8.0 11.0 7.1 9.5 4.5 5.7 8.4 6.5 12.1 7.0 6.4 6.6

7 13.5 7.5 11.8 12.0 8.2 11.8 4.3 8.1 4.2 5.1 8.1 7.4 12.5 7.1 7.2 7.2

Figure 5.14 and Figure 5.15 display the absolute differences between evaluation criteria values

broken down by the CAT levels for all the examined similarity measures. The outputs of both

charts are mostly in accordance. The best clusters are almost always4 obtained if the variables

with three categories are used, followed by the medium and complex dataset structure repre-

sented by five and seven categories. The differences between the CAT levels are much more

substantial compared to VAR or DIST levels in the previous analyses. Both charts show that

the created clusters are of the highest quality when the clustered variables contain only a small

number of categories. With an increasing number of categories, the cluster quality decreases

tremendously. Table XV and Table XVI in Appendix C contain the numeric characteristics for

both the boxplots.

4The exception is the G4 measure by the CU criterion.
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Figure 5.14: Boxplots of the PSFE values for three numbers of categories (CLM)
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Figure 5.15: Boxplots of the CU values for three numbers of categories (CLM)
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5.3.4 Single linkage method

Table 5.15 and Table 5.16 comprise MRS based on PSFE and CU for 16 similarity measures

broken down by the DIST levels in SLM. Both evaluation criteria provide very similar MRS

outputs. Some measures, whose relative clustering performance was poor in the other two

linkages, create good clusters, e.g., AN. On the other hand, the SV measure, with a good

clustering performance in ALM and CLM, generally performs poorly in SLM.

Most similarity measures provide a constant relative clustering performance in the three

DIST levels; thus, they do not depend on it. An improvement with the decreasing minimal

between-cluster distance can be observed by the measures AN, GA, and G4. The opposite

direction of dependence occurs by the IOF measure and then further by ES and SM measures.

Table 5.15: MRS for three minimal between-cluster distances based on PSFE (SLM)

DIST AN BU ES G1 G2 G3 G4 GA IOF LIN LIN1 OF SM SV VE VM
0.50 8.0 7.6 5.8 9.0 9.5 8.9 11.4 10.4 7.6 8.9 12.3 7.5 5.5 12.6 5.4 5.5

0.34 6.1 6.3 6.8 11.0 9.9 11.5 8.2 8.0 9.2 10.0 10.9 6.9 6.2 11.6 6.6 6.7

0.21 5.4 6.0 7.2 10.2 9.9 11.0 8.9 8.3 10.2 9.7 10.5 6.9 6.7 11.2 6.9 6.9

Table 5.16: MRS for three minimal between-cluster distances based on CU (SLM)

DIST AN BU ES G1 G2 G3 G4 GA IOF LIN LIN1 OF SM SV VE VM
0.50 8.3 8.1 5.6 9.4 9.1 9.4 10.8 10.3 7.1 9.6 12.2 7.8 5.3 12.3 5.3 5.4

0.34 6.8 7.2 6.6 11.5 9.4 11.9 7.1 7.8 8.3 10.9 10.5 7.6 6.0 11.4 6.4 6.5

0.21 6.1 7.3 6.9 10.6 9.4 11.5 7.4 8.0 9.2 10.7 10.1 7.9 6.4 11.0 6.8 6.9

Figure 5.16 and Figure 5.17 show the absolute differences for the PSFE and CU evaluation

criteria values in three DIST levels using the boxplots. Both charts show that the outputs of

the examined criteria are in accordance.

The results show that most of the examined similarity measures fail to create satisfactory

clusters by the medium DIST (0.34) representing partly intersecting clusters or the low DIST

(0.21) representing intersecting clusters since the PSFE and CU values are close to zero. Thus,

SLM can be used only in datasets with non-intersecting clusters (large DIST of 0.50) and only

with specific similarity measures, such as VE and VM, which are the best-performing measures

in SLM. IOF, ES, and SM also create relatively good clusters at the large DIST level. On the

contrary, G4, GA, SV, and LIN1 form poor-quality clusters in all situations.

When comparing the absolute values of the evaluation criteria in SLM with the other two

linkages, they are much lower than in ALM and CLM by most of the examined similarity

measures, making SLM unsuitable for HCA of categorical data in most practical situations.

Table XVII and Table XVIII in Appendix C contain the numeric characteristics for both the

boxplots.
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Figure 5.16: Boxplots of the PSFE values for three minimal between-cluster distances (SLM)
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Figure 5.17: Boxplots of the CU values for three minimal between-cluster distances (SLM)
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Table 5.17 and Table 5.18 contain MRS based on PSFE and CU criteria for the examined

similarity measures in SLM that are broken down by three VAR levels. The results indicate

that the relative clustering performance of the majority similarity measures remains constant.

For instance, the AN, BU, and OF measures, whose clusters are of good quality overall. When

increasing VAR, the highest improvement of the relative clustering performance is achieved

by the G4 measure, which is closely followed by GA. Smaller increases in the relative cluster

quality can also be observed by the measures ES and SM.

On the contrary, the largest worsening of the cluster quality occurs by the VE and VM measures.

They perform outstandingly in datasets with four variables. However, their clusters are of

average quality in the higher VAR levels. A smaller extent of cluster quality deterioration can

also be observed by the IOF and SV measures which generally perform worse than VE and VM.

Table 5.17: MRS for three numbers of variables based on PSFE (SLM)

VAR AN BU ES G1 G2 G3 G4 GA IOF LIN LIN1 OF SM SV VE VM
4 6.6 7.1 7.3 9.8 11.8 10.6 13.7 12.9 6.7 9.7 10.8 6.8 7.4 10.1 2.3 2.3

7 5.5 6.5 6.6 10.1 9.2 10.5 8.3 8.0 10.3 9.1 10.2 7.8 5.5 12.0 8.2 8.3

10 7.5 6.3 5.9 10.4 8.2 10.4 6.4 5.8 10.0 9.9 12.6 6.8 5.5 13.3 8.5 8.5

Table 5.18: MRS for three numbers of variables based on CU (SLM)

VAR AN BU ES G1 G2 G3 G4 GA IOF LIN LIN1 OF SM SV VE VM
4 7.0 7.9 7.0 9.6 11.7 10.5 13.5 12.9 6.5 9.9 10.6 7.5 7.1 9.7 2.3 2.3

7 5.9 7.3 6.5 10.7 8.6 11.1 7.2 7.9 9.4 10.2 9.7 8.5 5.3 11.5 8.0 8.2

10 8.3 7.3 5.7 11.2 7.5 11.1 4.6 5.4 8.7 11.1 12.6 7.4 5.3 13.4 8.2 8.3

Figure 5.18 and Figure 5.19 show the absolute differences in the internal evaluation criteria

values using the boxplots in three VAR levels. Both charts provide similar outputs in SLM,

which contradicts the other two linkage methods, where the CU criterion usually prefers

higher VAR levels.

The results show that decent clusters are provided only in datasets with four variables using

specific similarity measures. In particular, the best clusters are provided by VE and VM

measures, followed by IOF. In datasets with seven or ten variables, the PSFE and CU evaluation

criteria medians are close to zero with low IQR; thus, the created clusters are of poor quality.

Since the absolute differences between the evaluation criteria values by the similarity measures

are small by higher VAR levels, some measures, such as G4 and GA, achieved good MRS in

Table 5.17 and Table 5.18 although they created poor clusters in all situations. Table XIX and

Table XX in Appendix C contain the numeric characteristics for both the boxplots.
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Figure 5.18: Boxplots of the PSFE values for three variable numbers (SLM)
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Figure 5.19: Boxplots of the CU values for three variable numbers (SLM)
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Table 5.19 and Table 5.20 show MRS based on PSFE and CU for 16 similarity measures broken

down by the three different numbers of categories in SLM. Similarly, as in the previous analyses,

both tables present similar outputs.

Most of the examined similarity measures do not substantially change their relative clustering

performance with the increasing CAT levels, such as BU, VE, and VM, which perform generally

well, or the measures G1, G2, and G3, whose relative clustering performance is below the

average. The most considerable improvement of MRS with the increasing CAT occurs by the

similarity measure AN, followed by ES and SM. Further improvements can also be observed

by the measures GA and G4 with below-average MRS. On the other hand, the LIN1 measure

performs relatively well in datasets containing variables with three categories. However, its

clustering performance decreases vastly with more complex datasets containing variables

with five or seven categories. Similar behavior can be observed in the IOF and SV measures.

Table 5.19: MRS for three numbers of categories based on PSFE (SLM)

CAT AN BU ES G1 G2 G3 G4 GA IOF LIN LIN1 OF SM SV VE VM
3 8.5 6.4 7.4 10.2 10.7 11.1 10.2 10.1 7.8 10.2 6.8 7.5 7.4 9.7 6.1 6.1

5 6.4 6.6 6.8 10.5 9.5 10.4 9.5 8.7 9.1 9.1 12.3 6.8 5.5 12.5 6.1 6.1

7 4.7 6.8 5.6 9.6 9.1 10.0 8.7 8.0 10.1 9.2 14.5 7.1 5.6 13.2 6.8 6.9

Table 5.20: MRS for three numbers of categories based on CU (SLM)

CAT AN BU ES G1 G2 G3 G4 GA IOF LIN LIN1 OF SM SV VE VM
3 8.7 6.9 7.1 10.6 10.3 11.4 9.8 10.0 7.3 10.3 6.9 7.8 7.1 10.1 5.9 5.9

5 6.9 7.7 6.7 10.9 9.1 10.8 8.3 8.6 8.3 10.1 11.8 7.6 5.2 12.1 6.0 6.0

7 5.6 7.8 5.4 10.0 8.4 10.4 7.2 7.7 9.1 10.9 14.1 7.9 5.4 12.5 6.7 6.8

Figure 5.20 and Figure 5.21 display the absolute differences of the PSFE and CU values in three

different dataset complexities represented by CAT levels in SLM. Both charts provide similar

outputs for the PSFE and CU evaluation criteria.

In SLM, meaningful clusters are obtained primarily on datasets with a simple structure. In

more complex datasets containing five or seven categories, the clustering performance is

deficient, represented by the median values close to zero and low IQR values by most similarity

measures (except for VE and VM). In all dataset complexities, VE and VM provide the best

clusters. In the simple dataset structure, good clusters also occur by the measures BU, LIN1,

ES, and SM. Still, the evaluation criteria values are much lower than in ALM or CLM. The

numeric characteristics of both the boxplots are presented in Table XXI and Table XXII in

Appendix C.
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Figure 5.20: Boxplots of the PSFE values for three numbers of categories (SLM)
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Figure 5.21: Boxplots of the CU values for three numbers of categories (SLM)
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5.3.5 Experiment summary

The last part of the experiment focuses on summarizing the results obtained in the previous

subsections. Since the linkage method proved to be a very influential analysis setting, mutual

interactions of the similarity measures and the linkage methods will be examined in this

subsection. Consequently, the most appropriate similarity measures based on the selected

dataset properties and the used linkage will be recommended.

To determine which combinations of similarity measures and linkage methods create the best

possible clusters, mean PSFE and CU scores of 48 combinations of 16 similarity measures and

three linkage methods were ordered and ranked in decreasing order. The results are presented

in Table 5.21 and Table 5.22.

Table 5.21: Ordered combinations of similarity measures and linkage methods based on PSFE

order 1 2 3 4 5 6 7 8 9 10 11 12
measure G1 G3 SV LIN VE VM SM IOF ES G2 OF BU
linkage ALM ALM ALM ALM ALM ALM ALM ALM ALM ALM ALM ALM
mean 135.0 130.6 126.4 122.8 120.1 120.1 111.7 111.7 110.9 109.6 99.5 89.7

order 13 14 15 16 17 18 19 20 21 22 23 24
measure AN OF GA VE VM BU LIN IOF LIN1 SV G2 LIN1
linkage ALM CLM ALM CLM CLM CLM CLM CLM ALM CLM CLM CLM
mean 86.9 84.0 83.8 80.0 79.7 76.8 76.7 76.7 73.4 73.0 69.4 67.7

order 25 26 27 28 29 30 31 32 33 34 35 36
measure G1 G3 GA ES SM AN VE VM G4 IOF OF SM
linkage CLM CLM CLM CLM CLM CLM SLM SLM CLM SLM SLM SLM
mean 67.3 66.9 63.4 59.4 58.5 56.6 55.2 55.1 49.8 34.3 30.1 28.8

order 37 38 39 40 41 42 43 44 45 46 47 48
measure BU ES G4 AN G3 G1 LIN LIN1 G2 SV GA G4
linkage SLM SLM ALM SLM SLM SLM SLM SLM SLM SLM SLM SLM
mean 27.8 27.5 21.6 21.6 20.7 19.9 18.6 15.8 15.0 7.7 7.2 2.6

Both tables assess the combinations of similarity measures and the linkage methods similarly.

However, there are some exceptions, e.g., the BU measure with ALM, which is on the 12th rank

(row order) according to PSFE, and the 20th rank based on CU. The results show that the three

linkage methods (row linkage) are well separated by the mean evaluation criteria values (row

mean), which are averaged across all the examined dataset properties, and that there are only

slight overlaps by either well- or poorly-performing similarity measures (row measure), e.g.,

the OF measure in CLM or the G4 measure in ALM. It is apparent that ALM mostly outperforms

CLM and SLM (in this order) according to both evaluation criteria. Therefore, ALM should be

preferred unless there is a specific reason for using other linkage methods.

The G1 measure with ALM creates the best clusters. They are followed by G3 with ALM and

further by SV, LIN, VE, and VM (all with ALM). In CLM, the orders of the combinations based

on PSFE and CU are not as unambiguous as in ALM, but the measures OF, IOF, VE, LIN, VM,

and BU perform well with this linkage. The measures VE and VM work well with SLM. However,
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Table 5.22: Ordered combinations of similarity measures and linkage methods based on CU

order 1 2 3 4 5 6 7 8 9 10 11 12
measure G1 G3 LIN SV VE VM IOF SM ES G2 IOF OF
linkage ALM ALM ALM ALM ALM ALM ALM ALM ALM ALM CLM ALM
mean 0.32 0.31 0.30 0.30 0.28 0.28 0.28 0.27 0.27 0.27 0.23 0.23

order 13 14 15 16 17 18 19 20 21 22 23 24
measure LIN OF VE VM GA BU LIN1 BU G2 SV GA AN
linkage CLM CLM CLM CLM ALM CLM ALM ALM CLM CLM CLM ALM
mean 0.22 0.22 0.22 0.22 0.21 0.21 0.21 0.20 0.20 0.20 0.19 0.19

order 25 26 27 28 29 30 31 32 33 34 35 36
measure LIN1 G1 G3 ES SM G4 AN VE VM SM ES IOF
linkage CLM CLM CLM CLM CLM CLM CLM SLM SLM SLM SLM SLM
mean 0.19 0.19 0.19 0.17 0.17 0.17 0.15 0.11 0.11 0.08 0.08 0.08

order 37 38 39 40 41 42 43 44 45 46 47 48
measure G4 OF BU G3 G1 AN LIN G2 LIN1 SV GA G4
linkage ALM SLM SLM SLM SLM SLM SLM SLM SLM SLM SLM SLM
mean 0.07 0.07 0.06 0.06 0.05 0.05 0.05 0.04 0.04 0.02 0.02 0.01

these two measures create good-quality clusters in all the examined linkages.

The newly examined similarity measures in this thesis, namely AN, BU, GA, and SV, differ

substantially in their clustering performance, which is further enhanced by the linkage method

used. The AN measure generally performs poorly. It creates average-quality clusters in

SLM and poor clusters in the other two linkages. The BU measure creates relatively good

clusters in CLM and SLM. Thus, it is a good option when ALM cannot be used. The clustering

performance of the GA measure is average in CLM and SLM and poor in ALM. Therefore, it

cannot be recommended for common use. The SV measure belongs to the best similarity

measures in ALM, and it performs nicely in CLM as well. It does not work well in SLM, which

is not a big drawback since this linkage generally provides poor clusters in HCA. Thus, only SV

can be expected to create outstanding clusters from the newly examined similarity measures,

especially in ALM.

The reference similarity measure, SM, creates good clusters in SLM. However, these clusters

are usually useless in practice since SLM performs poorly overall. In ALM, the measure creates

decent-quality clusters, which cannot be compared to clusters produced by the best similarity

measures, such as G1 or LIN, but they are still good enough. In CLM, the SM measure produces

poor-quality clusters; thus, it should not be used with this linkage method.

A special comment is dedicated to the ES measure, which creates similar clusters to the SM

measure in the conducted experiment. The reason for this behavior is that with the fixed

number of categories in the clustered variables, ES has no advantage over SM. In fact, in

the previous research performed by Šulc (2016) and Šulc and Řezanková (2019) on datasets

with different numbers of categories in generated variables, ES belonged among the best

similarity measures in CLM and SLM. Thus, the ES measure could not unleash its full potential
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in the current experiment design. On the other hand, the current experiment design with

fixed numbers of variables enables a better assessment of the different levels of complexity

represented by different numbers of categories of the clustered variables.

There does not exist one universal similarity measure. Still, the main outputs of this experiment

can be summarized in Table 5.23, which recommends several similarity measures for each

linkage method. The similarity measures are divided into universal ones, which perform well

no matter the clustered dataset properties, and specific ones, which create exceptional clusters

if the particular dataset’s properties are satisfied.

Table 5.23: Recommended similarity measures based on the dataset properties and the used
linkage method

Linkage Measure(s) Use

ALM G1, G3 universal

LIN, SV higher number of variables

CLM IOF universal

OF, BU, LIN higher number of variables and categories

VE, VM lower number of variables and categories

SLM ES, SM universal

VE, VM lower number of variables and categories
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6 Comparison of Evaluation Criteria for
Categorical Data Clustering

This chapter deals with the second goal of this thesis, the assessment of evaluation criteria

for categorical data, which was presented in Introduction. The aim is to compare selected

internal evaluation criteria for categorical data presented in Chapter 3 and to analyze their

mutual relationships from different perspectives. The experiment excludes the WCM and WCE

criteria, also presented in Chapter 3, since they are not designed to recommend the optimal

number of clusters. Thus, 11 internal evaluation criteria are analyzed in this research. The

experiment conclusions should help a researcher decide which evaluation criterion is suitable

for a particular situation or inform which criteria assess the cluster quality almost identically.

Another objective is to examine the relationship between the discussed internal criteria and

the adjusted Rand index, which is a typical representative of the external criteria.

The chapter is divided into three sections. The first one describes the generated data and the

similarity measures used in the experiment. The second one presents the methods used for

evaluation criteria assessment, and the third one contains the conducted experiment.

6.1 Data Generation and Choice of Similarity Measures

The generated datasets for the experiment are obtained using the updated gen_object()
function introduced by Šulc (2016), in the same way as it was described in Section 5.1.

In the experiment, 81 different dataset settings were used; see Figure 6.1. The datasets were

generated with two, four, and six clusters. Three minimal between-cluster distances (0.21, 0.34,

0.50) were used, representing intersecting, partly intersecting, and almost non-intersecting

clusters. Next, the datasets were generated with three different numbers of variables (4, 7,

10) covering the typical range of clustering of categorical datasets. There are three numbers

of categories (3, 5, 7) by the generated variables representing simple, medium, and complex

dataset structures. The number of objects in generated datasets was firmly set to 600 cases.

Each dataset setting combination was replicated one hundred times to ensure the robustness

of the obtained results. In total, this makes 8,100 generated datasets used for the analysis.
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Figure 6.1: Dataset generation scheme for the second experiment

Chapter 5, and also the older research presented by Šulc (2016), proved that choosing a similar-

ity measure can substantially influence the created clusters’ quality in HCA of categorical data.

Since this experiment does not aim to further analyze the similarity measures for categorical

data but to analyze and compare the selected internal evaluation criteria for categorical data,

six well-performing but different similarity measures for categorical data were chosen for the

analysis. The ES measure uses the number of categories for the similarity definition; IOF uses

the absolute frequencies of categories, G1 and LIN are based on relative frequencies, and

VE uses the variable’s entropy. The SM measure, known as the simple matching approach,

is considered a reference similarity measure. Selecting only the well-performing similarity

measures should ensure that the experiment results will not be biased by poorly performing

measures, such as G4 or GA.

6.2 Methods for Evaluation Criteria Assessment

The internal evaluation criterion values can be either compared with values of other evaluation

criteria using correlation analysis or analyzed across the values of dataset properties using

analysis of variance (ANOVA). When comparing the created cluster partition with a vector

with the known cluster membership, the adjusted Rand index (ARI) can be used. Since ARI

was already presented in Section 3.1, this section briefly describes the remaining two methods

used in the experiment.

The main output of the correlation analysis is the correlation coefficient, which is defined as

the ratio between the covariance of two variables with two evaluation criteria values, e.g., PSFE

and CU, and the product of their standard deviations. The correlation coefficient takes on

values from −1 to 1, where the absolute values close to one indicate strong linear dependence

and values close to zero linear independence. Nonlinear relationships cannot be expressed by

this coefficient.

ANOVA is usually performed when analyzing relationships between quantitative and qualita-

tive variables. The quantitative variable contains the values of a given evaluation criteria, and
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the qualitative one expresses a particular property of the clustered dataset, e.g., the number of

clusters or variables. The method compares the between-group sum of squares (SSB ) with

the within-group sum of squares (SSW ). The higher the SSB variability, the more strongly the

quantitative variable depends on the categorical one and vice versa. The strength of depen-

dence can be expressed using the eta-squared coefficient η2, which is defined as a ratio of SSB

and the total sum of squares in a dataset (SST = SSB +SSW ). The eta-squared coefficient can

take on values from zero to one. The values close to one indicate a high dependence, and close

to zero show a low dependence of the evaluation criterion values on a given dataset’s property.

6.3 Experiment

The experimental section consists of four subsections. The first one explores dependencies

and differences between the examined evaluation criteria, the second one assesses the re-

lationships between the internal and external criteria, and the third one investigates the

dependences of the internal evaluation criteria on the properties of the clustered datasets and

the used similarity measures. The results are summarized in the fourth subsection.

The analysis was performed on 81 types of datasets whose generation process was explained

in Section 6.1. A series of HCAs for two to seven clusters with six selected similarity measures

listed in section 6.1 and the average linkage method (ALM) were applied to each dataset. ALM

was chosen since it generally provides the best cluster quality. In total, 81×100×6 = 48,600

HCA outputs were obtained. Each was evaluated by 11 examined internal criteria presented in

Section 3.2 (except for WCM and WCE). The evaluation criteria were analyzed mainly by the

correlation and eta-squared coefficients and ARI. The experiments’ scripts are discussed in

Table II in Appendix B.

6.3.1 Similarity of evaluation criteria

Correlation analysis and multidimensional scaling are performed to determine if the studied

evaluation criteria assess the cluster quality similarly. The analyzed data consists of evaluation

criteria values for the number of clusters for which the datasets were generated, e.g., the value

for PSFM in the two-cluster solution for the dataset generated with two original clusters and

the value for PSFM in the four-cluster solution for the dataset generated with four original

clusters. Thus, each correlation coefficient value is based on 8,100 evaluation criteria values.

The resulting correlation matrix is consequently used as an input for multidimensional scaling.

83



Chapter 6. Comparison of Evaluation Criteria for Categorical Data Clustering

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

PSFM

PSFE

CU

CI

BK

BIC

AIC

SI

DI

HM

HE

 0.97

 0.57

 0.32

 0.46

−0.56

−0.55

 0.70

 0.18

 0.23

 0.20

 0.64

 0.47

 0.58

−0.53

−0.51

 0.72

 0.23

 0.18

 0.14

 0.88

 0.86

−0.08

−0.05

 0.51

 0.17

−0.16

−0.20

 0.85

 0.19

 0.22

 0.34

 0.25

−0.28

−0.31

 0.03

 0.06

 0.39

 0.20

−0.32

−0.36

 1.00

−0.58

 0.00

−0.41

−0.39

−0.56

 0.01

−0.41

−0.40

−0.30

 0.21

 0.18

 0.00

 0.00  0.98

Figure 6.2: Correlations between pairs of internal evaluation criteria
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Figure 6.3: Multidimensional scaling of internal evaluation criteria

Figure 6.2 shows the results of correlation analysis and Figure 6.3 the outputs of multidimen-

sional scaling. Both charts show that evaluation criteria based on the same principle but on a

different variability measure (PSFM and PSFE, CU and CI, AIC and BIC, HM and HE) provide
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almost identical results. This fact is illustrated by correlations close or equal to one or close

positions of the labels in Figure 6.3. Therefore, in this thesis, only one representative for each

pair, namely PSFE, CU, BIC, and HE, will be used for the following analyses.

Regarding the non-paired criteria, the highest positive correlation (r = 0.86) occurs between

the variability-based evaluation criteria CU and BK. Since the BK criterion utilizes the second

order of the expected entropy to determine the optimal number of clusters, see Eq. (3.18), it

often yields negative values, which decrease its correlation with CU, which could have been

even higher otherwise.

The distance-based SI criterion’s values correlate strongly with PSFE (r = 0.72) and BIC (r =
–0.58). The negative correlation by BIC is all right since BIC (together with HE) prefers low

values of a criterion. Although these three criteria are based on different principles, they

are all highly related. By taking a closer look at the criteria’s formulas in Eq. (3.10) and

Eq. (3.19), the PSFE and BIC criteria utilize the clusters’ variability expressed by entropy.

They only differ in the way they transform it and penalize the higher number of clusters. A

different situation occurs by SI, which uses distances (dissimilarities) between objects in the

original dataset. Since every similarity measure for the dissimilarity calculation used in the

experiment has a different range of possible values (their values are incomparable), there arises

a question of whether the obtained correlation is relevant. Fortunately, when analyzing the

correlation coefficients for individual similarity measures separately, even higher correlations

are obtained, suggesting that the outputs presented in Fig. 6.2 can be considered valid.

There is a medium negative correlation between the newly proposed HE criterion and BIC

(r = –0.39). Since both criteria look for the minimal value to identify the optimal number

of clusters, this negative result suggests that these criteria often assess the cluster quality

oppositely.

Interestingly, outputs of the distance-based criteria, SI and DI, are moderately negatively

correlated (r =−0.30), suggesting that these distance-based criteria often provide contradic-

tory results. While SI correlates moderately or strongly with the other examined criteria, DI

shows only weak correlations with these criteria. However, when analyzing the correlations for

individual similarity measures separately, substantial differences in the obtained correlations

occur, suggesting that DI’s performance depends strongly on the used similarity measure in

HCA. This issue will be examined in the following analyses.

6.3.2 Relationships with the external evaluation

The quality of the created clusters in generated datasets can be easily assessed by external

evaluation criteria, e.g., accuracy or the adjusted Rand index (ARI), since the cluster mem-

berships are known by these datasets. In real-world datasets, the cluster memberships are

unknown, so researchers need to rely on internal evaluation indices whose relationship with

the external criteria was not analyzed in categorical data clustering. Therefore, the analyses in
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this subsection examine the relationships between external and internal evaluation criteria

through two objectives. First, to determine how well the internal criteria can recognize the

original number of clusters in datasets. Second, to determine to what extent they provide

comparable results to ARI (as a representative of external criteria) and, thus, how well they

represent the clustering quality.

The first objective is achieved through Table 6.1, which shows the proportions of cases (accu-

racies) when the internal criteria correctly identify the number of clusters in a dataset. Each

calculated accuracy is based on 2,700 datasets according to the known number of clusters in

generated datasets (two, four, six). For the analysis, HCA solutions with two to seven clusters

are considered. Thus, a situation when a specific evaluation criterion often recommends

the highest possible number of clusters does not positively influence the accuracies in the

six-cluster solution.

Table 6.1: Criteria’s ability to detect the original number of clusters measured by accuracy

Criterion 2 clusters 4 clusters 6 clusters Total

PSFE 0.968 0.131 0.093 0.398
CU 0.954 0.165 0.033 0.384
BK 0.967 0.127 0.045 0.380
BIC 0.455 0.229 0.297 0.327
SI 0.917 0.243 0.193 0.451
DI 0.798 0.041 0.080 0.306
HE 0.246 0.182 0.243 0.224

The results indicate that the ability to determine the optimal number of clusters depends

strongly on the original number of clusters in the datasets. The criteria can be divided into

two groups. The first one, consisting of PSFE, CU, BK, and DI, performs well in the two-cluster

solution. However, its classification performance drops drastically with the increasing number

of natural clusters in a dataset. In this analysis, they are even lower than a random guess,

16.7%.

The second group comprises the SI, BIC, and HE criteria that show more balanced performance

across the examined cluster solutions and perform better than a random guess on average

(especially the former two). The criteria in this group perform worse in the two-cluster

solution (except for SI), but their ability to correctly determine the original number of clusters

is much better in four- and six-cluster solutions. Although the proportions are not high,

especially compared to quantitative data with typical accuracies of around 80%, they do not

depend to such a large extent on the number of clusters in datasets so that a researcher can

expect relatively unbiased results. Still, one should not strictly rely on the provided results in

practical tasks and should examine at least one lower- and one higher-cluster solution than

the recommended one.

The second objective is carried out using Table 6.2, which describes the relationships between
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the internal criteria and ARI by correlation coefficient values. Similarly, as in the first objective,

each calculated coefficient is based on 2,700 datasets. High correlation coefficient values

indicate that internal criterion values are linearly dependent on the external ARI criterion

values. Thus, a researcher can expect that the internal criteria provide comparable results with

ARI in such a situation. Finally, since the low values of the BIC and HE criteria indicate good

clusters, negative correlations are expected by these criteria.

Table 6.2: Correlations between the internal criteria and ARI

Criterion 2 clusters 4 clusters 6 clusters Total

PSFE 0.441 0.598 0.536 0.640
CU 0.579 0.754 0.815 0.739
BK 0.685 0.543 0.342 0.687
BIC 0.045 −0.354 −0.508 −0.229
SI 0.220 0.487 0.597 0.514
DI 0.159 0.160 0.158 0.232
HE −0.599 −0.133 0.094 −0.211

Overall, the highest correlation with ARI is achieved by the CU criterion (r = 0.739), whose

values are increasingly more similar to ARI with the increasing number of clusters. It is followed

by BK and PSFE. The BK criterion shows a high correlation in the two-cluster solution, but

its values correspond with ARI less with the increasing number of clusters. On the contrary,

PSFE performs consistently across the examined cluster solutions. The SI and BIC criteria

values correspond more to ARI with a higher number of clusters. In total, the BIC criterion

shows a moderate negative correlation with ARI (r =−0.229). A closer look reveals the high

correlations in the four- and six-cluster solutions and the linear independence with ARI in the

two-cluster solution. The DI criterion usually shows a weak positive correlation, meaning that

it is only partly related to the ARI values. The HE criterion performs well in the two-cluster

solution. However, its values in the cluster solutions with four and six clusters are not related

to ARI.

When analyzing the correlations of the BIC criterion values with ARI in greater detail, the actual

dependence of BIC and ARI is, in fact, higher than the correlation coefficient values show.

Figure 6.4 demonstrates a non-linear relationship between BIC and ARI caused by the strong

dependence of BIC on the number of variables and categories. When these relationships are

analyzed separately for each number of variables and categories, stronger linear dependences

occur in each group. Still, they are weaker than dependencies by the CU criterion. The

dependence of the BIC values on the number of variables and categories is further examined

in the following subsection.
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Figure 6.4: Relationship between the BIC criterion and ARI by the G1 similarity measure by
the number of categories restricted to five (left) and the relationship between the BIC criterion
and ARI by the G1 similarity measure by the fixed number of variables to seven (right)

6.3.3 Dependence on similarity measures and dataset properties

One of the aims of the experiment is to determine the extent to which the examined evaluation

criteria depend on the analyzed dataset properties. The obtained strength of dependence

can reveal what information the value of a given criterion truly expresses. Therefore, the

dependencies of the criteria’s values on the number of clusters (CLU), the number of variables

(VAR), the number of categories (CAT), and the minimal between-cluster distance (DIST). In

this research, the dependence of the similarity measure (SIM) used in HCA is also examined,

mainly to determine how the used similarity measure influences the values of the distance-

based evaluation criteria.

The ideal evaluation criterion depends only on CLU; this dataset’s property is utilized in the

optimal number of clusters determination task. Theoretically, the evaluation criteria values

should not be influenced by DIST. In practice, however, lower DIST leads to clusters of poorer

quality; see Chapter 5. Thus, dependence on DIST can be used as an indirect indicator of a

criterion’s ability to evaluate the cluster quality correctly. Some evaluation criteria also depend

on VAR and CAT, which is considered a negative property. Fortunately, the impact of VAR and

CAT plays a minor role if one does not compare evaluation criteria values in datasets with

different numbers of variables and categories.
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Table 6.3: Dependences of criteria values on the datasets’ properties and the used similarity
measure expressed by the eta-squared statistic

Criterion CLU DIST VAR CAT SIM

PSFE 0.239 0.223 0.118 0.089 0.001
CU 0.289 0.256 0.070 0.061 0.002
BK 0.380 0.102 0.069 0.010 0.001
BIC 0.011 0.012 0.620 0.305 0.000
SI 0.091 0.114 0.053 0.106 0.453
DI 0.003 0.035 0.000 0.034 0.739
HE 0.139 0.071 0.213 0.075 0.004

Table 6.3 contains the eta-squared values expressing the strength of dependence between

quantitative internal criteria values for the optimal number of clusters (two, four, and six

clusters, depending on a dataset) and categorical datasets’ properties and the used similarity

measure. The results show that the BK, CU, and PSFE criteria values are moderately influenced

by the original number of clusters in a dataset. The strongest dependence occurs by the BK

criterion (η2 = 0.380), which seems positive since this criterion was initially determined for

the optimal number of clusters determination task. However, Table 6.1 shows that all three

criteria perform well only in datasets with two original clusters. The CU and PSFE criteria’s

values depend moderately on DIST (η2 ≈ 0.250). Thus, these criteria better reflect the changes

in cluster quality (indirectly expressed) compared to the other criteria. Still, all the examined

evaluation criteria reveal the cluster quality to some extent, as shown in Table 6.2.

When analyzing the influence of VAR on the evaluation criteria values, the strongest depen-

dence occurs by BIC (η2 = 0.620). This criterion also depends moderately on the number of

categories (CAT) (η2 = 0.305), as shown in Fig. 6.4, so its values represent mainly the number

of variables in a dataset and only partially the cluster quality. Thus, researchers may find

difficult to recognize, e.g., subtle changes in the criterion’s values in different cluster solutions

when looking for the optimal number of clusters or judging the cluster quality. Apart from

that, these dependencies do not influence the criterion’s performance.

The distance-based criteria DI and SI show the high eta-squared values with the used similarity

measure (SIM) representing strong (η2 = 0.739) and moderate (η2 = 0.453) dependences.

Fig. 6.5 illustrates the issues associated with using the distance-based criteria to compare

several similarity measures. Each chart represents the examined evaluation criterion values

broken down by the number of clusters and six used similarity measures. Since only the well-

performing similarity measures in ALM were chosen for the analysis, the cluster quality of the

produced clusters should be comparable across the measures. This happens by the variability-

and likelihood-based criteria but not by the distance-based ones, where different levels of

evaluation criteria values among the similarity measures can be observed. The situation

is especially problematic by the DI criterion, where the criterion’s value for good clusters

by one measure, e.g., LIN, can mean poor clusters by another measure, e.g., G1. Thus, the
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distance-based criteria values should not be used to compare clusters created by different

similarity measures. However, they can still be used for cluster quality evaluation if only one

similarity measure is used, e.g., when comparing different numbers of clusters in a dataset.

6.3.4 Experiment summary

The experiment compared 11 internal evaluation criteria suitable for categorical data. The

criteria were divided according to the principle they are based on, i.e., variability, likelihood,

and distance. Additionally, two new variability-based criteria introduced in Subsection 3.2.4,

HM and HE, were analyzed. The comparison focused mainly on the cluster quality assessment,

but the criteria’s ability to determine the optimal number of clusters was also examined.

The experiment showed that the values of the examined evaluation criteria differing only in

the measure of variability (mutability vs. entropy), namely PSFM and PSFE, and CU and CI,

are highly correlated. Hence, they are interchangeable for a researcher. Also, both likelihood-

based criteria, BIC and AIC, provide almost identical outputs, and using them both does not

offer additional insight into the cluster quality.

Table 6.4: Recommended evaluation criteria based on the intended task

Task Criteria

Quality of clusters CU (CI), PSFE (PSFM)
Quality of clusters (with one similarity measure) CU (CI), PSFE (PSFM), SI

Optimal number of clusters BIC (AIC)
Optimal number of clusters (with one similarity measure) SI, BIC (AIC)

Standardized outputs (with one similarity measure) SI

The experimental results indicate that no ideal evaluation criterion serves well in all situations.

Therefore, Table 6.4 recommends the most suitable evaluation criteria for a given task (ordered

by relevance).

The criteria CU (CI) and PSFE (PSFM) can be recommended for the cluster quality evaluation

since their values mainly correlate with values of the adjusted Rand index (ARI), which is a

commonly used external criterion for cluster quality assessment. Both criteria’s values also

depend on the minimal between-cluster distance, which is a necessary condition to judge the

cluster quality properly.

The criteria SI and BIC (AIC) perform better than the rest of the examined evaluation criteria

in the task of determining the optimal number of clusters. They can find the optimal number

of clusters in 18−30% of cases in solutions with four and six clusters, which is a considerably

worse result than a typical accuracy of criteria for quantitative data. It is most likely caused by

the nature of categorical data, where clusters are far more challenging to recognize.

The distance-based criterion SI works well in cluster quality determination and the optimal
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number of cluster determination tasks. Moreover, its outputs are standardized, so they are

easy to interpret. However, since the criterion’s values depend on the used similarity measure

in HCA, the criterion is unsuitable for comparison of the cluster quality achieved by several

similarity measures. Otherwise, it is a versatile evaluation criterion.

BK and DI criteria do not outperform the criteria in Table 6.4 since they perform worse in all

the observed situations (BK performs worse than CU, DI much worse than SI). Especially, DI

performs poorly overall in both the cluster quality and optimal cluster determination tasks.

The newly proposed criteria, HE and HM, performed around the average regarding the op-

timal number of clusters determination. However, their performance in the cluster quality

evaluation was inferior. Thus, these criteria can be recommended only for specific tasks.

92



Conclusion

The habilitation thesis aimed to thoroughly cover the topic of hierarchical cluster analysis

(HCA) of categorical data, which consisted of dissimilarity matrix calculation, application

of a given HCA algorithm, and cluster quality evaluation. Although the thesis dealt with all

three steps, it mainly focused on similarity measures for dissimilarity matrix calculation and

assessing the internal evaluation criteria for categorical data.

In Introduction, three main research goals were stated. The first one dealt with comparing

similarity measures for categorical data, the second one with assessing internal evaluation

criteria for categorical data, and the third one with developing a second generation of the

nomclust package. In the following paragraphs, these goals are evaluated in detail.

The first goal was to compare and evaluate the clustering performance of the selected simi-

larity measures for categorical data, including those not examined before. The objective was

also to explore the combinations of similarity measures and three different linkage methods

that might be useful in practical applications. To accomplish this goal, Chapter 2 was written,

where 16 examined similarity measures for categorical data were presented. The experiment

was carried out on 2,700 generated datasets in Chapter 5, where the similarity measures’ ability

to create good-quality clusters was examined based on the datasets’ properties and the linkage

method used. Compared to the previous research in this area performed by Šulc (2016), a new

way of cluster quality assessment based on boxplots was used. Moreover, the influence of

different minimal between-cluster distances and linkage methods was explored. Finally, more

similarity measures, a new evaluation criterion, and a substantially higher number of datasets

were used for the experiment.

The experimental results showed that there were considerable differences between the linkage

methods. By far, the best clusters were created by the average linkage method (ALM), so it

should be preferred unless there is a specific need for another linkage method. The method

shows the lowest dependence on the clustered datasets’ properties, namely the number

of variables, categories, and, especially, the minimal between-cluster distances, which are

impossible to determine in real applications. The complete linkage method (CLM) usually

creates worse clusters than ALM. This method proved to be the most sensitive to the clustered

datasets’ properties, especially the number of variables and their categories. The single linkage

method (SLM) generally created poor-quality clusters. Theoretically, the method can be
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suitable for simple datasets with few variables and their categories. However, it cannot be

recommended for common use.

Regarding the examined similarity measures for categorical data, generally, the best measures

are G1 and G3, which usually create the best clusters in ALM. Good clustering performance

can also be expected when using LIN, SV, and VE measures. CLM created the best clusters

with the IOF and OF similarity measures and SLM with the ES and SM measures. The VE and

VM similarity measures, proposed by Šulc (2016), performed well in all the examined linkages.

Such a consistent behavior did not occur by any other studied similarity measure. The SM

measure served as a reference similarity measure in the thesis since it is commonly used

by most researchers in the HCA of categorical data. The measure provided average-quality

clusters in ALM, poor clusters in CLM, and excellent clusters in SLM.

The research also confirmed that some of the examined similarity measures perform better

by specific dataset properties. For instance, LIN and SV improve their relative clustering

performance in ALM compared to the other measures when the number of variables is higher.

Another example is the outstanding performance of the VE and VM measures in CLM when the

number of clustered variables is low. Thus, the knowledge of the clustered dataset’s properties

can help a researcher select the best suitable similarity measures and thus maximally increase

the chance of getting the best possible clusters.

The newly examined similarity measures AN, BU, GA, and SV differ in their clustering per-

formance substantially. AN creates relatively good clusters only in SLM, which is useless in

practice since SLM generally performs poorly. BU works well in CLM and SLM. Thus, this

measure can be a preferred choice if CLM needs to be used. The GA measure constantly

provides below-average clusters, so it cannot be recommended for practical applications. On

the contrary, the SV measure performs excellently in ALM and well in CLM. Thus, this measure

can be recommended for regular use in ALM.

The second goal was to compare and assess 11 internal evaluation criteria for categorical data

from different perspectives, such as their mutual similarity, coherence with the adjusted Rand

index, or dependence on the clustered dataset’s properties. This goal was achieved through

Chapter 3 and Chapter 6. In Chapter 3, the examined criteria were described, presented, and

divided according to the principles they were built on. Moreover, two new variability-based

criteria were proposed there. Chapter 6 contains the experiment conducted on 8,100 generated

datasets, where the evaluation criteria were mainly assessed by well-known statistical methods,

such as correlation analysis or ANOVA.

The experiment identified evaluation criteria that assess the cluster quality almost identically,

namely PSFM and PSFE, CU and CI, BIC and AIC, and HM and HE. Thus, using both criteria

from a given pair to analyze the created clusters is redundant. Therefore, only a representative

from each group was analyzed in the consequent analyses.

First, the internal evaluation criteria were examined concerning the ability to identify the
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optimal number of clusters. The criteria can be divided into two groups. The first one,

consisting of the SI, BIC (AIC) and HE (HM) criteria, is able to predict the optimal number

of clusters approximately in 20–30% of cases. The second group, containing the remaining

evaluation criteria, primarily recommends the two-cluster solution, and thus, it is unsuitable

for this task. To sum it up, all the examined criteria performed poorly. Therefore, one cannot

rely on the recommended number of clusters by any of these criteria, and it is always good to

try out solutions with at least one less and one more cluster.

Although the ability to determine the optimal number of clusters is overall low, most of the

evaluation criteria correlate moderately or strongly with ARI, suggesting that they can identify

the clusters in a dataset well. The most consistent results with ARI are provided by the CU

(CI) criterion. PSFE (PSFM), SI, and BIC (AIC) also perform well. Thus, even though the true

cluster membership is unknown in practical situations, a researcher can mostly trust the

aforementioned internal criteria results. The newly proposed HE criterion and DI do not

correlate with ARI to a large extent, which corresponds to their overall poor performance.

The analysis of evaluation criteria dependence on the clustered datasets’ properties revealed

several interesting conclusions: First, although the values of the BK, CU, and PSFE criteria

depend moderately on the original number of clusters in a dataset, they are unable to predict

the correct number of clusters if there are more than two clusters in a dataset. Second, the

outstanding performance of the CU and PSFE criteria in the cluster quality assessment, which

was indirectly expressed by a moderate dependence of the criteria on the minimal between-

cluster distance, has been proved. Third, the distance-based criteria SI and DI are influenced

by the similarity measure used. Thus, these criteria are unsuitable for comparing clusters

created by different similarity measures.

The third goal was to present and improve the second generation of the nomclust package and

to illustrate its use. It was accomplished in Chapter 4, where the methods in the package are

described, and the package functionalities are clearly demonstrated. Thus, researchers from

various fields can use it as a single tool for complex hierarchical clustering of categorical data,

enabling them to choose from many similarity measures for categorical data and evaluation

criteria.

The package was essential when performing both experiments in this thesis. Due to C++

optimizations, the analyses could be performed on a much larger number of datasets than in

the previous studies, increasing their validity. Moreover, the large number of datasets enabled

an easy visualization of the evaluation criteria values using the boxplots.

The nomclustpackage is under continuous development. Compared to the package presented

by Šulc et al. (2022), the version described in this thesis (version 2.8) contains the DI criterion

and the variable weighting procedure theoretically introduced in Section 2.3. In future releases,

handling the missing observations and the approaches for mixed-type data are planned.

In conclusion, all three primary goals were satisfied. The thesis provided a complex analysis
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of categorical data clustering, mainly focused on not much-explored topics of similarity

measures and evaluation criteria. Additionally, it offers a software application that enables

convenient adoption of the researched methods. The obtained results can be considered

legitimate thanks to a robust simulation study, where each dataset combination was 100

times replicated. Thus, the thesis can help researchers to get oriented in categorical data

HCA and recommend the best combination of similarity measure and linkage method for a

given situation. The conducted research on evaluation criteria can also be beneficial in other

classification studies that deal with categorical data, including those that exceed the area of

HCA.
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Appendices

A Dissimilarity Matrix Calculations Steps of the Single Linkage Method

Table I: Dissimilarity matrix calculation steps of the single linkage method

step 1 1 2 3 4 5 6

1 0 0.617 1.000 0.796 0.889 0.907

2 0 0.841 0.637 0.730 0.748

3 0 0.841 0.466 0.654

4 0 0.730 0.594

5 0 0.841

6 0

step 2 1 2 3+5 4 6

1 0 0.617 0.889 0.796 0.907

2 0 0.730 0.637 0.748

3+5 0 0.730 0.654

4 0 0.594

6 0

step 3 1 2 3+5 4+6

1 0 0.617 0.889 0.796

2 0 0.730 0.637

3+5 0 0.654

4+6 0

step 4 1+2 3+5 4+6

1+2 0 0.730 0.637

3+5 0 0.654

4+6 0

step 5 1+2+4+6 3+5

1+2+4+6 0 0.654

3+5 0

105



Appendices

B Scripts Used in the Experiments

Table II: Files used for the conducted experiments

Data file The file is used to . . .

00_run.R run the whole analysis.
01_data_settings.csv provide properties of generated datasets.
02_data_generation.R generate the datasets.
03_calculations.R get and save the outputs of the performed HCAs.
04_evaluation.R extract evaluation criteria values from the HCA outputs.
05_experiment_1.R calculate MRS and produce boxplots in Experiment I.
06_experiment_2.R run the evaluation criteria assessment in Experiment II.

The file 01_data_settings.csv contains properties for 8,100 datasets with different numbers of
clusters (2, 4, 6). Experiment I, performed in Chapter 5, is based on the datasets with four original
clusters, i.e., on a subset of 2,700 datasets. Experiment II, conducted in Chapter 6, uses all 8,100
datasets.
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C Characteristics of the Boxplots

Table III: Boxplot characteristics for three linkage methods (PSFE)

LINK char. AN BU ES G1 G2 G3 G4 GA IOF LIN LIN1 OF SM SV VE VM

Q1 28.8 34.9 47.7 67.7 46.4 63.3 3.2 33.5 52.5 62.4 35.2 37.3 48.6 66.3 55.2 55.4

median 55.3 57.2 83.5 106.7 82.6 101.7 6.8 54.4 83.2 94.4 54.0 65.6 84.1 97.3 90.3 90.6

Q3 112.6 115.2 137.8 166.7 133.4 163.6 24.2 101.1 134.5 149.6 86.4 128.9 137.6 155.5 149.1 148.4

IQR 83.7 80.3 90.1 99.0 86.9 100.3 21.0 67.6 82.1 87.1 51.2 91.6 89.0 89.2 93.9 93.0

Q1 17.6 35.0 17.0 19.4 23.2 19.7 23.3 20.9 33.8 36.3 29.8 36.8 16.1 32.7 25.9 25.7

median 33.7 55.4 33.9 38.2 49.9 37.8 35.9 46.9 55.8 55.0 47.6 58.3 33.9 51.4 58.1 57.9

Q3 61.7 88.9 73.4 78.1 92.6 76.5 65.2 81.7 93.9 90.3 78.2 96.6 69.8 85.3 107.1 106.8

IQR 44.1 53.9 56.4 58.7 69.4 56.7 42.0 60.8 60.1 54.0 48.4 59.8 53.7 52.6 81.3 81.1

Q1 1.9 1.4 1.5 1.2 1.4 1.2 1.5 1.5 1.3 1.3 0.9 1.4 1.6 0.8 1.4 1.4

median 4.5 1.7 2.8 1.6 1.5 1.5 1.6 1.6 1.5 1.6 1.3 1.6 4.0 1.5 1.8 1.7

Q3 19.0 31.8 48.0 10.6 3.0 10.3 1.9 2.0 57.3 10.8 8.0 38.8 49.2 6.4 86.0 86.4

IQR 17.1 30.4 46.5 9.3 1.6 9.1 0.5 0.5 56.1 9.5 7.2 37.4 47.6 5.6 84.7 85.0

ALM

CLM

SLM

Q1 stands for the first quartile (25% quantile) corresponding to the lower border of the box in a boxplot,
median (50% quantile) expresses the median value representing the line in the box, Q3 stands for
the third quartile (75% quantile) corresponding the upper border of the box. IQR can be expressed
as Q3−Q1, and it represents the width of the box containing 50% of the middle evaluation criterion
values.

Table IV: Boxplot characteristics for three linkage methods (CU)

LINK char. AN BU ES G1 G2 G3 G4 GA IOF LIN LIN1 OF SM SV VE VM

Q1 0.09 0.13 0.18 0.23 0.18 0.22 0.02 0.13 0.20 0.21 0.14 0.14 0.18 0.21 0.20 0.20

median 0.18 0.19 0.25 0.29 0.24 0.28 0.03 0.19 0.26 0.28 0.19 0.21 0.25 0.27 0.26 0.26

Q3 0.27 0.27 0.34 0.39 0.34 0.38 0.09 0.27 0.35 0.37 0.25 0.30 0.34 0.36 0.36 0.35

IQR 0.17 0.14 0.16 0.16 0.16 0.16 0.07 0.14 0.16 0.16 0.11 0.15 0.16 0.15 0.16 0.16

Q1 0.08 0.12 0.09 0.09 0.12 0.09 0.14 0.12 0.16 0.14 0.12 0.13 0.09 0.13 0.13 0.13

median 0.12 0.18 0.13 0.14 0.18 0.14 0.16 0.17 0.20 0.20 0.16 0.20 0.13 0.18 0.20 0.20

Q3 0.19 0.27 0.22 0.24 0.25 0.23 0.20 0.23 0.27 0.27 0.23 0.28 0.22 0.25 0.27 0.27

IQR 0.11 0.14 0.13 0.14 0.13 0.14 0.06 0.11 0.11 0.13 0.11 0.15 0.13 0.12 0.14 0.14

Q1 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01

median 0.02 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.02 0.01 0.01 0.01

Q3 0.05 0.09 0.14 0.04 0.01 0.03 0.01 0.01 0.16 0.03 0.03 0.09 0.15 0.02 0.23 0.23

IQR 0.04 0.08 0.12 0.03 0.00 0.02 0.00 0.00 0.15 0.03 0.03 0.08 0.14 0.02 0.22 0.22

SLM

ALM

CLM
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Table V: Boxplot characteristics for three minimal between-cluster distances in ALM (PSFE)

DIST char. AN BU ES G1 G2 G3 G4 GA IOF LIN LIN1 OF SM SV VE VM

Q1 51.8 61.1 97.7 114.5 95.0 109.5 5.0 63.8 101.6 110.0 47.7 68.4 98.0 107.7 102.7 100.2

median 92.4 100.3 140.2 168.7 136.6 163.6 17.8 98.6 138.0 151.5 73.5 120.3 141.0 156.2 147.6 146.1

Q3 162.5 181.4 201.6 244.8 205.9 235.9 54.9 165.5 196.1 220.2 119.8 192.0 205.2 218.1 223.3 220.9

IQR 110.7 120.3 103.8 130.3 111.0 126.4 49.8 101.6 94.5 110.3 72.1 123.6 107.2 110.4 120.7 120.8

Q1 32.5 36.6 50.3 69.3 49.3 63.4 3.0 35.8 55.3 66.3 34.5 38.8 51.7 67.7 58.4 58.6

median 54.2 50.5 77.6 102.3 77.5 98.0 6.1 48.1 78.3 89.0 50.6 55.7 78.7 92.1 84.6 84.6

Q3 101.2 107.1 119.2 145.9 114.8 143.7 16.1 79.6 112.0 126.2 79.3 112.8 119.3 134.7 126.7 129.3

IQR 68.7 70.5 68.9 76.6 65.6 80.3 13.1 43.7 56.7 59.9 44.8 74.0 67.5 67.0 68.2 70.7

Q1 7.8 5.5 31.9 45.0 30.3 41.7 2.6 16.1 34.7 44.9 28.0 24.4 30.7 49.4 35.2 33.8

median 31.5 33.0 45.8 68.8 45.0 64.0 4.5 30.8 48.7 59.8 40.6 35.9 46.4 66.4 53.5 52.5

Q3 63.9 62.9 76.6 102.4 75.8 98.8 11.1 50.6 72.4 82.7 65.2 74.0 77.5 95.3 84.0 84.9

IQR 56.2 57.4 44.7 57.4 45.6 57.0 8.5 34.5 37.8 37.9 37.2 49.7 46.8 45.8 48.8 51.1

0.50

0.34

0.21

Table VI: Boxplot characteristics for three minimal between-cluster distances in ALM (CU)

DIST char. AN BU ES G1 G2 G3 G4 GA IOF LIN LIN1 OF SM SV VE VM

Q1 0.19 0.23 0.31 0.34 0.30 0.33 0.03 0.23 0.32 0.32 0.18 0.24 0.31 0.32 0.32 0.31

median 0.26 0.28 0.37 0.41 0.37 0.40 0.08 0.29 0.39 0.41 0.24 0.31 0.37 0.39 0.39 0.38

Q3 0.40 0.37 0.45 0.50 0.45 0.49 0.18 0.40 0.46 0.49 0.33 0.41 0.45 0.48 0.46 0.46

IQR 0.20 0.15 0.14 0.16 0.15 0.16 0.15 0.17 0.14 0.17 0.15 0.17 0.14 0.16 0.14 0.14

Q1 0.11 0.14 0.20 0.24 0.19 0.23 0.02 0.14 0.21 0.23 0.14 0.16 0.20 0.23 0.21 0.22

median 0.17 0.18 0.24 0.28 0.24 0.27 0.03 0.18 0.25 0.28 0.18 0.20 0.24 0.27 0.26 0.26

Q3 0.26 0.24 0.28 0.36 0.30 0.35 0.07 0.23 0.31 0.34 0.24 0.27 0.29 0.33 0.31 0.32

IQR 0.15 0.09 0.09 0.12 0.10 0.12 0.05 0.09 0.09 0.12 0.10 0.11 0.09 0.10 0.10 0.10

Q1 0.02 0.03 0.14 0.18 0.14 0.17 0.02 0.06 0.16 0.17 0.12 0.09 0.14 0.18 0.15 0.15

median 0.10 0.12 0.17 0.22 0.17 0.21 0.02 0.13 0.18 0.21 0.15 0.14 0.17 0.21 0.19 0.18

Q3 0.18 0.16 0.21 0.27 0.21 0.27 0.04 0.17 0.22 0.25 0.19 0.18 0.21 0.24 0.23 0.23

IQR 0.15 0.13 0.07 0.09 0.07 0.10 0.03 0.11 0.06 0.08 0.08 0.09 0.07 0.07 0.07 0.07

0.21

0.50

0.34

Table VII: Boxplot characteristics for three variable numbers in ALM (PSFE)

VAR char. AN BU ES G1 G2 G3 G4 GA IOF LIN LIN1 OF SM SV VE VM

Q1 56.6 80.7 97.1 120.5 90.7 115.8 8.6 58.8 85.9 95.4 62.7 87.6 99.2 112.5 101.7 106.8

median 117.4 128.1 140.4 176.2 138.7 171.4 25.2 94.6 130.7 143.8 87.5 137.8 140.9 159.9 157.3 158.1

Q3 185.9 198.4 208.8 245.3 212.2 237.2 60.4 169.2 206.8 217.8 140.3 213.8 214.2 218.6 226.5 228.3

IQR 129.3 117.7 111.7 124.8 121.6 121.3 51.8 110.5 120.9 122.4 77.7 126.2 115.1 106.1 124.8 121.5

Q1 32.1 34.2 49.8 68.1 48.1 63.0 3.5 33.7 54.6 62.5 36.1 36.9 51.8 69.1 56.8 56.0

median 52.8 50.5 76.5 100.6 77.2 96.1 6.7 49.9 80.1 90.5 50.0 56.7 78.2 92.0 83.1 83.3

Q3 91.6 83.7 118.5 144.3 114.1 141.0 15.7 87.2 123.9 135.5 73.3 99.6 116.7 131.2 125.4 122.4

IQR 59.5 49.4 68.7 76.2 66.0 78.0 12.2 53.5 69.3 73.0 37.2 62.6 64.8 62.2 68.6 66.4

Q1 6.2 12.8 32.4 45.2 31.1 42.5 2.2 22.6 35.9 46.9 24.5 27.0 31.9 48.1 35.5 34.6

median 37.9 37.9 46.7 70.4 46.3 65.9 3.2 37.5 53.1 67.4 34.3 39.3 46.7 65.5 54.6 57.1

Q3 56.0 54.6 80.8 103.6 81.7 97.0 5.6 55.6 85.1 97.8 48.0 60.3 81.4 92.3 85.9 84.7

IQR 49.8 41.8 48.4 58.4 50.5 54.5 3.4 32.9 49.3 50.9 23.5 33.3 49.5 44.1 50.5 50.1
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C Characteristics of the Boxplots

Table VIII: Boxplot characteristics for three variable numbers in ALM (CU)

VAR char. AN BU ES G1 G2 G3 G4 GA IOF LIN LIN1 OF SM SV VE VM

Q1 0.11 0.15 0.19 0.21 0.18 0.21 0.03 0.14 0.19 0.18 0.13 0.16 0.19 0.19 0.20 0.20

median 0.20 0.21 0.24 0.27 0.24 0.26 0.07 0.20 0.24 0.24 0.18 0.23 0.24 0.25 0.25 0.25

Q3 0.27 0.28 0.30 0.33 0.30 0.32 0.14 0.27 0.31 0.31 0.23 0.30 0.31 0.31 0.31 0.31

IQR 0.17 0.13 0.11 0.12 0.12 0.12 0.11 0.13 0.12 0.12 0.10 0.14 0.11 0.12 0.12 0.11

Q1 0.11 0.12 0.18 0.24 0.18 0.22 0.02 0.13 0.21 0.22 0.14 0.13 0.19 0.22 0.20 0.20

median 0.17 0.17 0.25 0.31 0.25 0.30 0.03 0.18 0.27 0.29 0.19 0.19 0.26 0.29 0.27 0.27

Q3 0.27 0.27 0.35 0.40 0.34 0.39 0.08 0.28 0.36 0.38 0.25 0.30 0.35 0.38 0.37 0.36

IQR 0.17 0.14 0.17 0.16 0.17 0.17 0.06 0.15 0.16 0.16 0.11 0.17 0.16 0.15 0.16 0.16

Q1 0.03 0.06 0.17 0.24 0.17 0.22 0.02 0.13 0.19 0.24 0.14 0.14 0.17 0.23 0.19 0.18

median 0.17 0.18 0.24 0.33 0.23 0.31 0.02 0.19 0.27 0.32 0.19 0.19 0.24 0.30 0.27 0.27

Q3 0.25 0.25 0.36 0.43 0.37 0.42 0.04 0.27 0.39 0.43 0.25 0.28 0.37 0.41 0.39 0.38

IQR 0.22 0.20 0.19 0.20 0.20 0.20 0.02 0.14 0.20 0.18 0.11 0.14 0.20 0.18 0.20 0.20
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Table IX: Boxplot characteristics for three numbers of categories in ALM (PSFE)

CAT char. AN BU ES G1 G2 G3 G4 GA IOF LIN LIN1 OF SM SV VE VM

Q1 69.6 49.6 62.0 105.7 73.2 102.1 2.9 48.6 72.4 89.4 60.2 57.4 63.8 90.2 79.0 80.7

median 125.8 107.2 124.8 164.5 127.3 161.4 7.3 106.5 131.7 151.9 97.9 127.5 126.9 152.9 144.8 145.5

Q3 194.0 183.7 196.1 243.5 202.3 235.2 30.5 176.1 203.6 226.8 156.3 208.3 198.3 217.4 218.6 220.0

IQR 124.4 134.1 134.1 137.8 129.1 133.0 27.6 127.5 131.2 137.4 96.0 150.9 134.6 127.3 139.6 139.3

Q1 28.2 32.8 45.1 63.9 43.0 59.2 3.1 32.5 52.6 62.2 35.3 36.0 46.8 64.4 53.5 52.3

median 49.7 54.3 81.9 102.2 78.2 95.6 6.6 51.8 81.2 91.7 50.9 58.7 82.4 94.2 86.1 85.1

Q3 84.8 94.5 120.9 145.8 114.0 141.7 24.7 80.5 116.1 126.7 75.7 106.6 122.3 135.9 128.0 124.8

IQR 56.7 61.6 75.8 81.9 71.0 82.5 21.7 48.0 63.5 64.4 40.4 70.5 75.5 71.5 74.5 72.4

Q1 5.3 30.2 42.2 50.8 39.2 48.0 3.4 26.5 44.4 50.5 26.7 31.4 41.7 54.9 46.7 45.1

median 30.6 44.7 71.8 79.7 66.5 76.8 6.8 41.7 66.7 72.1 37.9 46.1 71.4 78.2 73.0 73.7

Q3 49.5 76.0 99.1 114.5 94.6 110.4 20.1 63.1 94.7 100.5 52.3 80.7 98.8 105.7 102.8 101.8

IQR 44.2 45.8 57.0 63.8 55.4 62.4 16.8 36.7 50.3 50.0 25.6 49.3 57.1 50.7 56.1 56.7
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Table X: Boxplot characteristics for three numbers of categories in ALM (CU)

CAT char. AN BU ES G1 G2 G3 G4 GA IOF LIN LIN1 OF SM SV VE VM

Q1 0.22 0.17 0.22 0.30 0.23 0.30 0.02 0.19 0.24 0.28 0.22 0.21 0.22 0.27 0.26 0.27

median 0.29 0.26 0.30 0.38 0.31 0.37 0.04 0.27 0.32 0.35 0.26 0.30 0.31 0.35 0.33 0.33

Q3 0.40 0.37 0.42 0.47 0.43 0.46 0.10 0.40 0.43 0.45 0.33 0.41 0.42 0.45 0.44 0.44

IQR 0.18 0.20 0.20 0.16 0.19 0.17 0.08 0.21 0.19 0.18 0.11 0.19 0.20 0.18 0.18 0.17

Q1 0.07 0.12 0.18 0.23 0.17 0.22 0.02 0.14 0.20 0.22 0.15 0.15 0.19 0.21 0.20 0.20

median 0.16 0.18 0.23 0.28 0.23 0.27 0.03 0.18 0.25 0.27 0.18 0.20 0.24 0.27 0.25 0.25

Q3 0.23 0.25 0.33 0.36 0.31 0.35 0.09 0.25 0.33 0.35 0.22 0.27 0.33 0.34 0.34 0.33

IQR 0.16 0.13 0.14 0.14 0.14 0.14 0.08 0.11 0.13 0.14 0.07 0.12 0.14 0.13 0.14 0.14

Q1 0.02 0.11 0.16 0.18 0.15 0.17 0.02 0.11 0.17 0.17 0.11 0.12 0.16 0.18 0.17 0.17

median 0.10 0.15 0.21 0.23 0.20 0.22 0.03 0.15 0.22 0.22 0.13 0.16 0.21 0.22 0.21 0.21

Q3 0.16 0.21 0.28 0.30 0.27 0.29 0.08 0.20 0.29 0.29 0.16 0.21 0.27 0.29 0.28 0.28

IQR 0.14 0.10 0.12 0.12 0.12 0.12 0.07 0.09 0.11 0.12 0.05 0.10 0.12 0.11 0.12 0.12

7

3

5

109



Appendices

Table XI: Boxplot characteristics for three minimal between-cluster distances in CLM (PSFE)

DIST char. AN BU ES G1 G2 G3 G4 GA IOF LIN LIN1 OF SM SV VE VM

Q1 25.3 58.1 26.3 31.3 35.1 31.1 30.0 30.6 53.4 62.6 45.5 59.9 25.5 57.0 40.6 38.7

median 47.4 82.3 57.8 57.5 75.5 59.4 47.1 68.6 89.5 89.1 67.2 86.5 53.9 80.7 89.4 89.4

Q3 98.5 135.0 138.3 159.9 145.5 155.9 82.5 130.9 150.7 142.4 110.2 160.2 135.1 132.2 160.1 161.7

IQR 73.2 76.9 111.9 128.5 110.4 124.8 52.5 100.2 97.3 79.8 64.8 100.4 109.6 75.2 119.5 123.0

Q1 16.1 36.8 15.4 18.1 21.0 18.4 22.3 19.8 32.3 38.2 29.3 38.1 15.2 33.4 23.7 23.9

median 31.2 53.1 33.1 35.4 49.1 35.2 34.1 46.6 53.1 50.2 43.0 55.4 33.5 47.3 56.3 58.3

Q3 56.3 81.0 61.4 73.2 83.9 70.6 62.8 71.0 78.8 71.4 70.3 89.5 62.4 70.2 96.8 95.4

IQR 40.2 44.2 45.9 55.1 62.9 52.2 40.5 51.3 46.5 33.2 41.0 51.4 47.2 36.9 73.1 71.5

Q1 13.0 25.5 11.9 14.2 17.4 14.5 20.3 15.8 23.5 25.6 23.3 25.6 12.1 23.7 18.1 18.0

median 26.0 35.7 24.0 26.6 36.5 27.5 30.9 33.5 39.6 35.4 33.8 38.1 23.7 33.3 41.2 41.4

Q3 44.0 53.7 42.6 47.1 63.7 46.8 53.3 59.3 60.3 52.7 56.0 58.2 42.3 51.7 73.3 72.2

IQR 31.0 28.2 30.7 32.9 46.3 32.3 33.0 43.5 36.8 27.1 32.7 32.6 30.2 28.0 55.3 54.2

0.50

0.34

0.21

Table XII: Boxplot characteristics for three minimal between-cluster distances in CLM (CU)

DIST char. AN BU ES G1 G2 G3 G4 GA IOF LIN LIN1 OF SM SV VE VM

Q1 0.12 0.19 0.13 0.14 0.17 0.14 0.17 0.16 0.22 0.22 0.17 0.20 0.13 0.20 0.18 0.18

median 0.17 0.27 0.20 0.21 0.23 0.21 0.20 0.21 0.28 0.30 0.23 0.28 0.18 0.27 0.25 0.25

Q3 0.28 0.37 0.34 0.38 0.34 0.38 0.23 0.33 0.39 0.38 0.32 0.40 0.35 0.35 0.36 0.37

IQR 0.17 0.18 0.21 0.25 0.18 0.25 0.06 0.18 0.18 0.16 0.15 0.20 0.22 0.14 0.18 0.18

Q1 0.08 0.13 0.08 0.09 0.12 0.09 0.14 0.12 0.16 0.15 0.12 0.14 0.08 0.13 0.13 0.13

median 0.11 0.19 0.13 0.13 0.17 0.13 0.16 0.16 0.20 0.19 0.16 0.19 0.12 0.17 0.19 0.19

Q3 0.18 0.25 0.21 0.23 0.24 0.23 0.18 0.23 0.26 0.24 0.21 0.28 0.21 0.22 0.27 0.27

IQR 0.11 0.12 0.13 0.14 0.13 0.15 0.04 0.11 0.10 0.09 0.09 0.14 0.13 0.09 0.14 0.14

Q1 0.06 0.09 0.07 0.07 0.10 0.07 0.12 0.10 0.14 0.12 0.10 0.09 0.07 0.10 0.11 0.11

median 0.09 0.13 0.10 0.10 0.15 0.11 0.15 0.14 0.17 0.15 0.13 0.14 0.10 0.13 0.16 0.16

Q3 0.14 0.18 0.16 0.17 0.20 0.16 0.17 0.19 0.20 0.18 0.16 0.20 0.15 0.17 0.21 0.21

IQR 0.08 0.09 0.08 0.09 0.10 0.09 0.04 0.09 0.07 0.06 0.06 0.10 0.08 0.07 0.11 0.11

0.21

0.50

0.34

Table XIII: Boxplot characteristics for three variable numbers in CLM (PSFE)

VAR char. AN BU ES G1 G2 G3 G4 GA IOF LIN LIN1 OF SM SV VE VM

Q1 36.2 45.0 39.0 37.7 64.8 38.0 61.2 59.2 63.9 55.5 56.7 47.9 38.3 52.9 78.6 78.9

median 58.4 74.4 64.2 59.8 93.5 60.4 76.4 80.0 89.8 83.3 80.1 82.4 61.4 86.2 110.2 110.6

Q3 126.8 132.0 122.4 124.2 139.2 125.8 100.9 122.2 136.7 137.8 138.4 144.9 119.0 140.8 161.4 160.9

IQR 90.6 87.1 83.4 86.6 74.4 87.7 39.7 63.0 72.8 82.3 81.6 97.0 80.7 88.0 82.8 82.0

Q1 16.9 34.4 15.3 18.2 23.8 18.6 29.6 21.8 30.4 34.4 31.8 35.5 14.5 33.5 27.4 26.4

median 27.5 54.3 24.4 29.1 38.1 30.8 34.7 33.0 45.8 50.7 43.5 55.2 24.0 49.6 42.2 41.3

Q3 54.3 82.2 48.1 59.8 67.4 57.9 44.2 59.4 71.9 72.5 63.9 88.7 48.8 70.3 74.6 75.6

IQR 37.4 47.8 32.8 41.6 43.6 39.3 14.6 37.6 41.5 38.1 32.1 53.1 34.3 36.9 47.1 49.2

Q1 11.0 30.1 11.0 12.4 12.8 12.5 17.8 11.4 24.8 27.1 21.5 30.7 11.0 26.7 13.6 13.6

median 19.2 44.7 20.1 23.3 22.4 22.8 20.8 19.9 38.7 40.1 28.5 47.7 19.6 37.2 23.5 24.1

Q3 36.8 65.4 42.2 51.2 49.4 52.9 24.9 46.3 60.8 62.0 41.7 69.5 43.0 53.5 53.0 52.6

IQR 25.8 35.3 31.2 38.7 36.6 40.4 7.1 34.9 36.0 35.0 20.2 38.9 32.0 26.7 39.4 39.0
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C Characteristics of the Boxplots

Table XIV: Boxplot characteristics for three variable numbers in CLM (CU)

VAR char. AN BU ES G1 G2 G3 G4 GA IOF LIN LIN1 OF SM SV VE VM

Q1 0.09 0.09 0.11 0.10 0.16 0.10 0.16 0.16 0.16 0.13 0.12 0.10 0.11 0.12 0.18 0.18

median 0.14 0.14 0.16 0.14 0.20 0.15 0.18 0.19 0.20 0.17 0.16 0.16 0.15 0.17 0.22 0.22

Q3 0.21 0.21 0.23 0.23 0.24 0.22 0.21 0.23 0.24 0.24 0.23 0.23 0.22 0.24 0.27 0.27

IQR 0.12 0.12 0.12 0.13 0.08 0.13 0.05 0.07 0.08 0.11 0.11 0.13 0.12 0.12 0.09 0.09

Q1 0.08 0.13 0.08 0.09 0.12 0.09 0.14 0.12 0.15 0.15 0.12 0.14 0.08 0.13 0.13 0.13

median 0.12 0.19 0.12 0.13 0.17 0.14 0.16 0.16 0.20 0.19 0.17 0.20 0.11 0.18 0.18 0.18

Q3 0.19 0.27 0.19 0.22 0.25 0.22 0.19 0.23 0.27 0.26 0.23 0.28 0.19 0.25 0.26 0.26

IQR 0.11 0.14 0.11 0.13 0.13 0.12 0.06 0.11 0.12 0.11 0.10 0.14 0.12 0.12 0.13 0.13

Q1 0.07 0.16 0.08 0.09 0.09 0.09 0.12 0.09 0.16 0.16 0.12 0.17 0.08 0.14 0.10 0.10

median 0.11 0.22 0.13 0.15 0.15 0.15 0.14 0.14 0.23 0.22 0.16 0.23 0.13 0.19 0.15 0.15

Q3 0.17 0.30 0.23 0.27 0.26 0.27 0.17 0.25 0.31 0.32 0.23 0.32 0.23 0.27 0.27 0.27

IQR 0.10 0.14 0.15 0.18 0.17 0.18 0.05 0.16 0.15 0.16 0.10 0.16 0.15 0.13 0.18 0.18

10

4

7

Table XV: Boxplot characteristics for three numbers of categories in CLM (PSFE)

CAT char. AN BU ES G1 G2 G3 G4 GA IOF LIN LIN1 OF SM SV VE VM

Q1 45.7 64.2 49.3 62.6 65.2 59.8 25.3 58.2 61.6 52.8 47.9 75.0 49.6 51.2 68.8 69.6

median 77.0 106.4 96.9 107.7 110.1 108.4 40.5 100.3 105.4 103.4 86.4 118.2 93.7 89.9 121.2 120.7

Q3 139.4 163.1 158.1 176.8 158.0 175.1 85.3 148.1 160.2 163.1 151.2 185.2 157.1 150.1 184.3 179.3

IQR 93.7 99.0 108.8 114.3 92.8 115.3 60.0 89.9 98.6 110.3 103.4 110.2 107.6 98.9 115.5 109.7

Q1 17.9 37.0 16.9 20.5 23.1 21.1 25.0 20.0 33.1 35.9 30.5 38.7 16.3 35.2 25.7 24.9

median 28.7 54.0 27.4 33.7 38.9 32.7 38.8 33.4 53.2 55.3 46.7 55.2 27.3 51.6 45.0 43.7

Q3 47.8 76.9 49.6 51.9 74.9 53.6 67.2 63.9 78.2 76.2 69.4 77.8 49.5 75.2 90.4 90.6

IQR 29.9 39.9 32.7 31.4 51.8 32.6 42.2 43.8 45.1 40.3 38.9 39.1 33.2 40.0 64.7 65.6

Q1 10.7 24.2 10.5 11.6 14.0 11.6 20.6 12.7 23.3 28.2 23.6 24.5 10.0 23.7 14.4 14.7

median 17.3 35.6 17.3 18.6 23.7 18.7 31.2 22.3 37.8 41.3 34.6 36.2 15.8 33.4 26.4 26.4

Q3 28.7 51.4 30.9 29.6 48.5 30.9 52.1 47.9 54.0 56.4 47.9 51.8 29.1 51.0 60.0 59.8

IQR 18.0 27.2 20.3 18.0 34.4 19.3 31.5 35.2 30.7 28.2 24.3 27.2 19.1 27.3 45.6 45.1
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Table XVI: Boxplot characteristics for three numbers of categories in CLM (CU)

CAT char. AN BU ES G1 G2 G3 G4 GA IOF LIN LIN1 OF SM SV VE VM

Q1 0.17 0.19 0.19 0.21 0.23 0.21 0.12 0.21 0.22 0.20 0.19 0.23 0.19 0.19 0.25 0.25

median 0.22 0.26 0.25 0.28 0.27 0.28 0.16 0.26 0.28 0.26 0.24 0.30 0.25 0.24 0.30 0.30

Q3 0.30 0.36 0.36 0.40 0.36 0.41 0.21 0.35 0.37 0.35 0.32 0.41 0.36 0.33 0.39 0.39

IQR 0.14 0.17 0.17 0.19 0.13 0.20 0.09 0.13 0.15 0.15 0.12 0.18 0.17 0.14 0.15 0.15

Q1 0.09 0.13 0.09 0.10 0.13 0.10 0.15 0.12 0.17 0.15 0.13 0.14 0.09 0.13 0.14 0.14

median 0.12 0.18 0.12 0.13 0.17 0.13 0.17 0.16 0.20 0.19 0.16 0.19 0.12 0.18 0.19 0.19

Q3 0.15 0.25 0.17 0.19 0.21 0.18 0.20 0.19 0.25 0.25 0.20 0.25 0.16 0.24 0.23 0.23

IQR 0.07 0.12 0.07 0.08 0.08 0.08 0.05 0.07 0.09 0.10 0.07 0.11 0.07 0.10 0.09 0.09

Q1 0.06 0.09 0.06 0.07 0.09 0.07 0.14 0.09 0.13 0.11 0.09 0.09 0.06 0.09 0.09 0.09

median 0.07 0.12 0.08 0.08 0.12 0.09 0.16 0.12 0.16 0.15 0.12 0.13 0.08 0.13 0.13 0.13

Q3 0.10 0.18 0.12 0.11 0.16 0.12 0.18 0.16 0.19 0.20 0.14 0.18 0.11 0.17 0.17 0.17

IQR 0.04 0.09 0.05 0.05 0.07 0.05 0.04 0.07 0.06 0.09 0.05 0.09 0.05 0.08 0.08 0.08
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Table XVII: Boxplot characteristics for three minimal between-cluster distances in SLM (PSFE)

DIST char. AN BU ES G1 G2 G3 G4 GA IOF LIN LIN1 OF SM SV VE VM

Q1 2.4 1.5 17.3 1.3 1.4 1.3 1.5 1.5 1.3 1.3 0.9 1.4 26.6 0.9 1.5 1.5

median 8.8 21.4 58.9 44.6 3.5 54.0 1.6 1.6 59.0 35.6 1.4 48.9 59.4 2.4 66.9 66.2

Q3 62.9 79.8 87.7 75.8 71.6 79.6 2.1 3.5 103.2 75.4 11.3 84.7 88.5 11.9 147.2 147.2

IQR 60.5 78.3 70.4 74.5 70.2 78.3 0.7 2.0 101.9 74.1 10.3 83.2 61.8 11.0 145.6 145.7

Q1 1.6 1.4 1.4 1.2 1.3 1.2 1.5 1.4 1.2 1.3 0.8 1.4 1.5 0.8 1.3 1.3

median 3.5 1.6 1.8 1.4 1.5 1.3 1.6 1.6 1.4 1.4 1.1 1.5 2.2 1.3 1.5 1.5

Q3 12.7 8.6 8.2 3.0 1.9 1.8 1.9 1.9 4.3 2.6 7.0 4.7 10.8 4.8 60.3 60.7

IQR 11.1 7.2 6.8 1.9 0.6 0.7 0.4 0.4 3.1 1.3 6.1 3.3 9.4 4.0 59.0 59.4

Q1 1.8 1.5 1.5 1.3 1.4 1.2 1.5 1.5 1.3 1.3 0.8 1.4 1.5 0.8 1.4 1.4

median 3.9 1.6 1.8 1.5 1.5 1.4 1.6 1.6 1.5 1.5 1.2 1.6 2.0 1.4 1.5 1.5

Q3 11.8 6.4 4.3 3.6 1.8 2.4 1.9 1.9 1.9 3.1 7.3 2.5 4.7 4.7 42.1 41.1

IQR 10.0 5.0 2.8 2.3 0.4 1.1 0.4 0.4 0.7 1.8 6.5 1.1 3.2 3.9 40.7 39.8

0.50

0.34

0.21

Table XVIII: Boxplot characteristics for three minimal between-cluster distances in SLM (CU)

DIST char. AN BU ES G1 G2 G3 G4 GA IOF LIN LIN1 OF SM SV VE VM

Q1 0.01 0.01 0.06 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.08 0.01 0.01 0.01

median 0.03 0.06 0.20 0.11 0.01 0.14 0.01 0.01 0.18 0.09 0.01 0.11 0.20 0.01 0.23 0.23

Q3 0.16 0.22 0.26 0.23 0.21 0.24 0.01 0.01 0.26 0.22 0.04 0.24 0.27 0.05 0.30 0.30

IQR 0.14 0.21 0.20 0.22 0.20 0.23 0.00 0.01 0.25 0.21 0.04 0.23 0.18 0.04 0.29 0.29

Q1 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01

median 0.02 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01

Q3 0.04 0.02 0.03 0.01 0.01 0.01 0.01 0.01 0.02 0.01 0.03 0.01 0.04 0.02 0.16 0.16

IQR 0.03 0.01 0.02 0.01 0.00 0.00 0.00 0.00 0.01 0.00 0.02 0.01 0.03 0.01 0.15 0.15

Q1 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01

median 0.02 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01

Q3 0.03 0.02 0.02 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.03 0.01 0.02 0.02 0.12 0.12

IQR 0.02 0.01 0.01 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.02 0.00 0.01 0.01 0.11 0.11

0.21

0.50

0.34

Table XIX: Boxplot characteristics for three variable numbers in SLM (PSFE)

VAR char. AN BU ES G1 G2 G3 G4 GA IOF LIN LIN1 OF SM SV VE VM

Q1 10.8 4.4 6.5 2.9 1.7 1.8 1.6 1.6 3.1 2.9 0.9 4.7 6.3 4.1 62.1 62.7

median 22.7 26.0 20.6 8.9 3.1 7.2 1.9 2.2 61.8 9.4 7.0 34.3 18.8 8.4 117.3 118.2

Q3 50.3 97.6 70.4 46.6 22.1 52.3 2.9 4.7 128.8 43.4 58.2 104.0 64.9 18.2 171.5 172.5

IQR 39.5 93.2 63.9 43.7 20.4 50.5 1.3 3.1 125.6 40.5 57.3 99.3 58.6 14.2 109.4 109.8

Q1 2.1 1.4 1.5 1.2 1.3 1.2 1.5 1.4 1.2 1.3 0.9 1.4 1.6 0.8 1.3 1.3

median 3.9 1.6 2.0 1.4 1.5 1.4 1.6 1.6 1.4 1.5 1.5 1.5 2.7 1.2 1.5 1.5

Q3 9.2 12.1 24.8 4.2 1.8 2.7 1.8 1.8 2.0 2.6 7.5 1.9 48.8 2.8 46.1 43.6

IQR 7.1 10.7 23.3 3.0 0.5 1.5 0.4 0.3 0.8 1.4 6.6 0.5 47.2 1.9 44.8 42.3

Q1 1.1 1.4 1.4 1.1 1.3 1.2 1.4 1.4 1.2 1.2 0.8 1.4 1.4 0.8 1.3 1.3

median 1.8 1.5 1.6 1.3 1.4 1.3 1.5 1.5 1.3 1.3 1.0 1.5 1.6 0.8 1.4 1.4

Q3 2.7 1.6 2.9 1.5 1.6 1.5 1.7 1.6 1.5 1.5 1.3 1.6 3.5 1.2 1.6 1.6

IQR 1.7 0.3 1.6 0.4 0.3 0.3 0.3 0.2 0.3 0.3 0.4 0.3 2.1 0.4 0.3 0.3
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Table XX: Boxplot characteristics for three variable numbers in SLM (CU)

VAR char. AN BU ES G1 G2 G3 G4 GA IOF LIN LIN1 OF SM SV VE VM

Q1 0.03 0.01 0.02 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.00 0.01 0.02 0.02 0.15 0.15

median 0.05 0.06 0.06 0.03 0.01 0.02 0.01 0.01 0.13 0.03 0.03 0.08 0.06 0.03 0.22 0.22

Q3 0.11 0.17 0.15 0.10 0.06 0.11 0.01 0.01 0.22 0.10 0.13 0.19 0.14 0.06 0.27 0.28

IQR 0.08 0.16 0.12 0.09 0.05 0.10 0.00 0.01 0.21 0.09 0.13 0.17 0.12 0.04 0.13 0.13

Q1 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01

median 0.02 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01

Q3 0.03 0.04 0.10 0.02 0.01 0.01 0.01 0.01 0.01 0.01 0.03 0.01 0.17 0.01 0.16 0.16

IQR 0.02 0.03 0.10 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.03 0.00 0.16 0.01 0.16 0.15

Q1 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01

median 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01

Q3 0.02 0.01 0.02 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.02 0.01 0.01 0.01

IQR 0.01 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00
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4

7

Table XXI: Boxplot characteristics for three numbers of categories in SLM (PSFE)

CAT char. AN BU ES G1 G2 G3 G4 GA IOF LIN LIN1 OF SM SV VE VM

Q1 1.6 1.6 1.7 1.3 1.5 1.2 1.7 1.6 1.4 1.3 2.5 1.5 1.7 1.8 1.5 1.5

median 7.9 20.9 14.9 4.5 1.9 2.9 1.9 1.9 2.3 3.7 16.4 2.4 14.9 4.5 57.9 55.3

Q3 52.9 93.8 72.2 23.6 11.8 34.4 3.3 5.1 112.3 41.3 60.8 99.8 72.2 13.8 159.1 160.1

IQR 51.3 92.2 70.5 22.3 10.3 33.2 1.6 3.5 110.9 39.9 58.3 98.3 70.5 12.0 157.6 158.6

Q1 1.7 1.5 1.4 1.2 1.4 1.2 1.5 1.5 1.3 1.3 0.9 1.4 1.6 0.8 1.3 1.4

median 4.7 1.7 2.1 1.5 1.5 1.5 1.6 1.6 1.5 1.6 1.2 1.6 7.5 1.2 1.7 1.7

Q3 22.5 12.7 18.8 8.1 2.3 6.3 1.8 1.8 23.2 8.2 3.0 16.8 39.6 5.3 81.1 82.4

IQR 20.8 11.3 17.3 6.9 0.9 5.1 0.3 0.4 22.0 6.9 2.1 15.4 37.9 4.5 79.8 81.0

Q1 2.1 1.4 1.5 1.2 1.3 1.2 1.4 1.4 1.2 1.3 0.8 1.4 1.5 0.8 1.3 1.3

median 3.3 1.5 2.2 1.4 1.4 1.4 1.5 1.5 1.3 1.4 0.9 1.5 2.2 0.9 1.5 1.5

Q3 8.4 2.1 19.3 2.6 1.7 2.0 1.6 1.6 2.2 2.1 1.0 2.1 14.2 2.2 48.9 48.2

IQR 6.3 0.7 17.8 1.3 0.4 0.7 0.2 0.2 1.0 0.8 0.3 0.8 12.7 1.4 47.6 46.9
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Table XXII: Boxplot characteristics for three numbers of categories in SLM (CU)

CAT char. AN BU ES G1 G2 G3 G4 GA IOF LIN LIN1 OF SM SV VE VM

Q1 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01

median 0.03 0.06 0.05 0.02 0.01 0.01 0.01 0.01 0.01 0.01 0.06 0.01 0.05 0.02 0.19 0.18

Q3 0.13 0.20 0.20 0.07 0.04 0.09 0.01 0.02 0.24 0.10 0.15 0.21 0.20 0.05 0.30 0.30

IQR 0.12 0.19 0.19 0.06 0.03 0.08 0.01 0.01 0.23 0.09 0.14 0.20 0.19 0.04 0.29 0.29

Q1 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01

median 0.02 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.03 0.01 0.01 0.01

Q3 0.06 0.03 0.06 0.03 0.01 0.02 0.01 0.01 0.07 0.03 0.02 0.04 0.14 0.02 0.21 0.21

IQR 0.05 0.02 0.05 0.02 0.00 0.02 0.00 0.00 0.06 0.02 0.01 0.03 0.13 0.01 0.20 0.20

Q1 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01

median 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01

Q3 0.02 0.01 0.07 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.05 0.01 0.13 0.13

IQR 0.01 0.00 0.06 0.01 0.00 0.00 0.01 0.01 0.00 0.00 0.00 0.00 0.04 0.00 0.12 0.12
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