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Abstract

Regional macroeconomic processes may not be properly analyzed without accounting

for their spatial nature: geographic distances and interactions between neighbors. State

level and regional macroeconomic policy actions should be prepared, implemented and

evaluated while accounting for the spatial nature of their effects: positive or negative

spillovers may influence the desired outcome. Spatial econometrics is a versatile tool

for a broad range of quantitative analyses performed with geo-coded (spatially defined)

data. Over the last few years, both cross-sectional and panel data methods of spatial

analysis have gained considerable attention in literature. While both types of data

provide valuable insight and improve relevancy of quantitative analyses, spatial panels

often bring useful advantages over cross-sectional spatial data in terms of tackling the

temporal aspects of (macroeconomic or other) dynamics as well as by allowing to account

for unit’s individual effects.

This contribution to spatial analysis provides both methodological background and em-

pirical applications of spatial econometric methods. The theoretically and methodolog-

ically focused chapters contain a comparative summary of estimation methods, corre-

sponding tests and model interpretations. In contrast with most publications in the field,

great emphasis is given to model robustness evaluation with respect to possible changes

in the underlying spatial structure (both conceptual and parametric differences in spatial

definitions are discussed). The empirical/application part of this contribution is focused

on regional dynamics in macroeconomic processes within selected EU countries, with

major emphasis on the Czech Republic and its neighbors.

Keywords: Spatial dependency, spatial econometric model, spatial panel data
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Preface

Spatial econometrics is a field of econometrics that explicitly deals with spatial inter-

actions and spatial dependencies among geographically determined units. This contri-

bution features both methodological background and empirical applications of spatial

analysis and spatial econometric methods. Chapters 1 to 5 are theoretically and method-

ologically focused, encompassing a comparative summary of estimation methods, corre-

sponding tests and model interpretations. Chapters 6 to 8 draw from published (submit-

ted) empirical papers by the author and provide empirical analyses focused on regional

dynamics in macroeconomic processes within selected EU countries.

Structure of the thesis

Chapter 1 motivates spatial analysis methods and outlines basic terms and definitions.

Stochastic spatial process (random field) is defined along with specific variability statis-

tics (covariogram, variogram and semivariogram) and different types of stationarity as-

sumptions. Also, a generalization of the spatial stochastic process and its features for

panel data (spatio-temporal data) is included.

Chapter 2 focuses on basic tools, methods and underlying concepts of spatial econo-

metrics. Spatial dependency (spatial autocorrelation) processes are motivated. Spatial

structure & its setup are extensively discussed, with focus on various neighborhood

definition methodologies. Main spatial dependency statistics and tests are introduced

(Moran’s I, Geary’s C and Getis’ G).

Chapter 3 provides a detailed discussion of cross-sectional spatial econometric models:

their setup, estimation methods and testing. Interpretation of an estimated spatial model

is provided, along with specific topics (direct effects and spill-overs) and their caveats.

Robustness of the estimators with respect to varying spatial structure is addressed in

detail. Both fully parametric and semi-parametric approaches to spatial analysis are

included.
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Abstract

Chapter 4 generalizes the topics and concepts introduced in chapter 3 to spatial panel

data and spatial panel models. Different types of static spatial panel models are ad-

dressed here and both random effects and fixed effects assumptions are used.

Chapter 5 provides a brief overview of complex and advanced spatial panel models.

Dynamic spatial panel models are described, as well as spatial panel data featuring a

hierarchical spatial structure.

Chapter 6 uses Getis’ spatial filtering to provide an empirical analysis of unemployment

dynamics and its major constituent factors. 2015 data from 10 EU countries at the

NUTS2 level are used and model robustness is evaluated. This chapter is largely based

on a published contribution by Formánek and Hušek [38].

Chapter 7 focuses on macroeconomic convergence processes. Spatial panel data (years

2000 – 2015, 111 NUTS2 regions in 10 EU states) are used for “β-convergence” evalua-

tion. Significant emphasis is given to the analysis of model robustness with respect to

the underlying spatial structure. This chapter draws from a published contribution by

Formánek [37].

Chapter 8 uses spatial panel data to analyze macroeconomic growth dynamics in selected

EU countries. Regional (NUTS2) interdependencies and macroeconomic factors are con-

sidered and model robustness is systematically evaluated against changes in neighbor-

hood definitions. Chapter 8 is based on a paper submitted by Formánek to the Journal

of International Studies.

Chapter 9 contains brief final remarks.

2
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1. Introduction

Spatial econometrics is a specialized field of econometrics that explicitly accounts for

spatial interactions among geographical units. Spatial econometric models are often used

to analyze regional macroeconomic processes and interactions. However, geographical

units may be studied at multiple aggregation levels (from state-level to counties, etc.).

Both cross-sectional and panel data can be used for quantitative spatial analyses.

Although the principle of spatial autocorrelation may resemble autocorrelation in time

series (expanded to two dimensions), there are major differences: unlike the unidirec-

tional dependency in time series, spatial units can affect each other mutually. Also,

spatial arrangements often defy precise identification: there is seldom a unique, “right”

way to define the correct spatial pattern for a given dataset or econometric model.

1.1. Brief history of spatial analysis

Spatial analysis can be traced back to early attempts at land surveying and cartography.

Many science fields have contributed to establishing and developing the modern form

of spatial analysis (astronomy, botanical studies, ecology, epidemiology, geology, etc.).

However, as we focus on the statistical aspects of spatial analysis, John Snow and his

disease mapping of 1854 is usually cited as the first historical application.

In August 1854, there was a major cholera outbreak in the Soho neighborhood of London,

UK. There were 127 cholera related deaths around the area. At the time, germ theory

(microorganisms causing disease) was not a generally accepted paradigm. Dr. John Snow

(a physician and promoter of medical hygiene) spoke to local residents and mapped where

the cholera cases occurred (see figure 1.1). Based on his map, he was able to pinpoint

the public water pump on Broad Street as the source of contaminated water causing the

cholera outbreak. Dr. Snow used statistics to find a relationship between water sources

and cholera cases and subsequently found out that the waterworks company supplying

water to Broad Street pump was taking water from a sewage polluted area of the Thames

river.

4



1. Introduction

Figure 1.1.: Map by Dr. John Snow, showing clusters of cholera cases in London. Source:
Wikipedia.

More recently, in 1935, R.A. Fisher was the first to recognize the statistical implications

of spatial dependency. In his work on design of experiments in agricultural science [35],

he wrote:

“After choosing the area we usually have no guidance beyond the widely

verified fact that patches in close proximity are commonly more alike, as

judged by the yield of crops, than those which are further apart.”

Spatial variability, i.e. field-to-field changes in yields are largely due to physical prop-

erties of the soil and changes in environmental properties of the fields. In his analysis,

Fisher devised a way to avoid confounding treatment effect with plot effect by intro-

ducing field randomization: his solution was to eliminate spatial dependency bias by

localizing the crops under scrutiny into randomly assigned blocks.

Spatial econometrics has its roots in two texts, published in the 1950s: Notes on con-

tinuous stochastic phenomena by Moran [73] and The contiguity ratio and statistical

5



1. Introduction

mapping by Geary [44]. However, the actual framework for contemporary applied spa-

tial econometrics was provided by Cliff and Ord: many of their joint publications were

published, starting in the late 1960s – see e.g. [21] or [22].

Most of the fundamental topics and methods relevant for spatial econometrics can be

found in specialized textbooks, such as Introduction to Spatial Econometrics by LeSage

and Pace [67]. As we look at contemporary methods and advancements in spatial

econometrics, Elhorst [28] defines three generations of spatial econometric models: The

first generation consists of models based on cross-sectional data (see also [39], [41] or

[67]). The second generation comprises models based on static spatial panel data (see

[71], [72] or [79]). Finally, the third generation encompasses dynamic spatial panel data

models (see [28] or [33]).

1.2. Basic terms and topics of spatial analysis

The main focus of this text resides in spatial econometrics. However, it seems necessary

to briefly outline some key underlying terms, concepts and definitions.

Measuring spatial variables

Spatial measurements and measurement scales form a persistent issue in spatial analysis.

In many practical applications, data vary continuously over space, but are measured only

at discrete locations. Therefore, to characterize spatial features of the variables studied,

some form of spatial aggregation is necessary. In economics (and other fields as well),

the aggregation of observed spatial variables may be just another source of bias and

potential data mis-manipulation. The area-specific summary values (unemployment

rates, population densities, etc.) are influenced by both the shape and scale of the

aggregation units. For example, a choropleth map showing euro-zone unemployment

rates would look radically different if we plot individual counties instead of state-wide

unemployment rates. Furthermore, districts and other administrative boundaries may

change over time. Hence, scale, consistency and relevance should be carefully considered

when collecting and analyzing spatial data.

In EU countries, consistency in geographic partitioning is well addressed by the Classi-

fication of Territorial Units for Statistics (NUTS) standards, developed by the EU (see

http://ec.europa.eu/eurostat/web/nuts). Besides NUTS, smaller Local adminis-

trative units (LAUs) are also defined for EU member states and candidates. As NUTS

and LAUs are EU-specific, their classification only covers the member states of the EU

6



1. Introduction

in detail.

Beyond EU, multiple geographic & mapping datasets are freely available to the re-

searchers (e.g. from Google Maps, www.gadm.org, etc.). However, consistency of the

partitioning (hierarchical structuring into comparable areas) is often problematic. Fi-

nally, as we take into account repeated measurements and spatial panel data econometric

models, temporal frequency may also play a significant role in determining data “quality”

and relevance.

Measuring spatial distances

With time series, there is only one dimension and its direction is set. In contrast, with

spatial analysis, we usually use a two-dimensional space. For two given spatial units si

and sj , direction can matter as well their distance. Distances (d) can be defined in a

variety of ways, yet the following technical conditions should always apply (invariant to

spatial translation, i.e. “shift”):

1. d(si, sj) = d(sj , si) (symmetry)

2. d(si, si) = 0 (distance between a point and itself is zero)

3. d(si, sj) ≤ d(si) + d(sj) (triangle inequality; d(si) is the distance from origin)

Euclidean distances are measured along straight lines between two point in the “ordi-

nary” Euclidean space. In two dimensions, the Euclidean distance (L2 norm) is defined

as

d(si, sj) =
√

(six − sjx)2 + (siy − sjy)2 , (1.1)

where the x and y subscripts are used to handle planar coordinates. For many appli-

cations in spatial statistics and spatial econometrics, the computational simplicity of

distances in the two-dimensional Euclidean space is remarkably attractive. For smaller

distances, the non-planar latitude and longitude geographic coordinates are often pro-

jected to an Euclidean space as the so called local projection preserves distances [24].

For larger distances, planar projection accumulates non-negligible errors. In such cir-

cumstances, the great circle distances (shortest path between two points on a sphere

given, their longitudes and latitudes) may be calculated using the haversine formula:

d(si, sj) = 2r arcsin

√
sin2

(
φj − φi

2

)
+ cos(φi) cos(φj) sin2

(
lj − li

2

)
, (1.2)
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1. Introduction

where r is the radius of the sphere, φ1 and φ2 are the latitudes of points si and sj in radi-

ans, li and lj are the longitudes (in radians). The formula (1.2) is only an approximation

when applied to the Earth, which is not a perfect sphere. However, this approximation is

sufficient as long as we can accept distance values that are correct within a 0.5% margin.

For more accurate results that take Earth’s ellipticity into consideration, we can revert

e.g. to the Vicenty’s formulae (see [24] for details).

Manhattan distance is a concept based on the well-known grid-like street geography

of New York’s Manhattan district. The Manhattan distance (L1 norm) is a function on

a fixed grid: it’s the sum of horizontal and vertical components. For example, this is

the driving distance between two points that a car has to cover while driving on streets,

orthogonally intersecting at residential blocks.

Upon relevance in practical or theoretical applications, many additional definitions of

distance are available for use in spatial statistics – see [24] for an exhaustive list and

additional details.

Spatial stochastic process – random field

A typical time-series based stochastic process may be denoted as {Z(t) : t ∈ T} where t

is a time index from a one-dimensional index set T . Spatial stochastic process (random

field) is a generalization of a stochastic process where the index set is not one-dimensional

(e.g. time), but a higher dimensional Euclidean space (or a part of it). For a generic

location s given by a vector of d coordinates in a d-dimensional Euclidean space, spatial

stochastic process is often denoted as

Z(s) : s ∈ D ⊆ Rd . (1.3)

Typically, d = 2 for most economic and econometric applications, d = 3 is often used

in fields such as geology or astronomy. D is a fixed finite set of N spatial locations

s1, s2, . . . , sN . Individual si units are points in space (say, with GPS-based latitude and

longitude coordinates). Sometimes, such points can be associated with non-zero surface

area elements – basically, they can serve as representative locations for anything from

agricultural crop-fields to districts, counties, regions or even states. Much like in time-

series analysis, the individual realization of a spatial stochastic process – random field –

(1.3) are often denoted z(si) or, simply, zi.

Observed spatial stochastic data may be either discrete or continuous, they may be

observations at a given point in space or as spatial aggregations. The underlying spa-

8



1. Introduction

tial structure may also be either continuous or discrete and both regular (chess-board

like) and irregular spatial structures (NUTS regions) are commonly used in empirical

applications.

Stationarity of spatial processes, covariogram and (semi)variogram

The notion of stationarity in spatial stochastic processes may somewhat resemble sta-

tionarity in time series analysis. A common simplifying assumption that is made in

spatial analysis is that the spatial process under scrutiny repeats itself over the domain

D. Such process is said to be stationary. For a stationary process, the absolute coordi-

nates at which we observe the process are unimportant. Orientated distances between

the observed points provide sufficient information for analysis: if we translate the entire

set of coordinates by a specific distance in a specified direction, the stochastic process

and its features remain unchanged.

Strong stationarity of a spatial stochastic process may be formally defined as follows:

We start with a given spatial stochastic process Z(s) and data observations {z(si) : i =

1, . . . ,m}, forming the following finite-dimensional distribution:

Fs1,...,sm(z1, . . . , zm) = P [Z(s1) ≤ z1, Z(s2) ≤ z2, . . . , Z(sm) ≤ zm] .

Strong stationarity means that F is invariant under spatial translation h. Unlike dij

(Euclidean distance between two spatial units i and j), h is an orientated distance

“shift” (spatial translation) vector. For strong stationarity,

P [Z(s1) ≤ z1, Z(s2) ≤ z2, . . . , Z(sm) ≤ zm]

= P [Z(s1 + h) ≤ z1, Z(s2 + h) ≤ z2, . . . , Z(sm + h) ≤ zm] ,
(1.4)

has to hold for any spatial translation h. This assumption is often too restrictive for

real applications. For different types of empirical analyses, alternative (relaxed) types of

stationarity are often sufficient. Before discussing weaker forms of spatial stationarity,

we need to define the covariogram and (semi)variogram. Covariogram C is the covariance

between two spatial units: C(si, sj) = cov[Z(si), Z(sj)], semivariogram γ is defined as

γ(si, sj) = var[Z(si) − Z(si)] and the variogram is defined as 2γ. Please note that C

and γ definitions are very general – they do not require a stationary random field.

9



1. Introduction

Weak stationarity (also called second order stationarity) assumes that the first two

moments exist, are invariant (and finite) and covariance only depends on spatial trans-

lation (orientated distance) h:

E[Z(s)] = µ ,

var[Z(s)] = σ2 ,

cov[Z(s+ h), Z(s)] = C(s+ h, s) = C(h) .

(1.5)

Here, because autocovariance is a function of h only (under weak stationarity), it follows

that for any two spatial points si and sj such that si − sj = h, we can write:

cov [Z(si), Z(sj)] = C(si − sj) = C(h) . (1.6)

To summarize – under weak stationarity, the covariogram (spatial autocovariance) de-

pends only on the difference between locations si and sj and not on the locations them-

selves. Also, for h = 0, the expression (1.6) simply describes variance:

cov [Z(s+ 0), Z(s)] = C(0) = var [Z(s)] .

A closely related “weak dependency” (by analogy to time series analysis) assumption

is often used for empirical analysis of weakly stationary random fields. Under weak

dependency, covariance between observations disappears with growing distance: C(h)→
0 as ||h|| →∞.

Intrinsic stationarity is less restrictive than weak (second order) stationarity and it

is defined in terms of first differences. A spatial process is intrinsically stationary if the

difference between two observed spatial points is weakly stationary:

E[Z(s+ h)− Z(s)] = 0 ,

var[Z(s+ h)− Z(s)] = 2γ(h) ,
(1.7)

where 2γ(h) ≥ 0 is the variogram. For intrinsically stationary spatial processes, 2γ(h)

is defined as:

2γ(h) = var[Z(s+ h)− Z(s)]

= E
{

([Z(s+ h)− E(Z(s+ h))]− [Z(s)− E(Z(s))])2
}
.

(1.8)

Generally, the value of (1.8) increases with growing oriented distance h.

10



1. Introduction

The two types of relaxed stationarity are related: weak stationarity implies intrinsic

stationarity but not vice versa. Importantly, for weakly stationary spatial processes

(where E(Z(s+ h)) = E(Z(s)) = µ) the variogram (1.8) simplifies to:

2γ(h) = E
[
(Z(s+ h)− Z(s))2

]
, (1.9)

i.e. to the expected squared difference between two observed realizations of a spatial

stochastic process.

The semivariogram is denoted as γ(h) and it equals to half the variogram (i.e. expected

squared difference between two spatial observations). Since (1.8) and (1.9) are expecta-

tions of a square, γ(h) ≥ 0 for both weakly and intrinsically stationary random fields.

Also, at h = 0, γ(0) = 0 because

E
[
(Z(si)− Z(si))

2
]

= 0 for ∀ i .

Also, it can be shown [23] that the variogram (semivariogram) is a generalization of the

covariance function (1.6) and under weak stationarity, the two functions are related by

expression (see Appendix A.2):

γ(h) = C(0)− C(h) . (1.10)

If a stationary stochastic process has no spatial dependency at all (i.e. C(h) = 0 for

h 6= 0), the semivariogram (1.10) is constant: γ(h) = var[Z(s)] everywhere, except for

h = 0, where γ(0) = 0.

Isotropic spatial process may be defined through a semivariogram: γ(h) = γ(||h||) =

γ(d). Isotropy means that the semivariogram depends only on the distance d between

two points and not on direction. The lack of isotropy – anisotropy – means the semivar-

iogram depends on direction as well as distance. To assess and test anisotropy, we can

estimate and plot directional semivariograms (see [23] for discussion of this topic and

corresponding tests).

Empirical semivariogram

Although expression (1.6) carries useful information, most statisticians tend to favor

semivariogram over the covariogram. The reasons are historical and – more importantly

– the intrinsic stationarity conditions required for an empirical semivariogram are less

restrictive than the weak stationarity required for empirical covariogram calculations

11



1. Introduction

[69]. To perform empirical analysis of distance-based data correlations, we construct

the so called empirical semivariogram as follows: First, we divide the distances observed

over the domain D into K conveniently chosen intervals:

I1 = (0, d1], I2 = (d1, d2], . . . , IK = (dK−1, dK ] .

Here, d1 is the maximum distance within the I1 interval and dK is the maximum distance

observed over the field of data. The intervals can be proportional in terms of distance

or in terms of sets of observation pairs allocated to each interval (to adjust for unevenly

spaced observations). Although the interval setup may seem rather arbitrary, generally

accepted rules (concerning interval setup, etc.) are available [57]. Please note that

distances are determined by d (distance magnitudes) only – here, we do not use the

orientated distances h.

Next, the empirical semivariogram is calculated using the following formula:

γ̂(dk) =
1

2N(dk)

∑
N(dk)

[Z(si)− Z(sj)]
2 , (1.11)

where N(dk) is the number of distinct observation pairs in the interval Ik and γ̂(dk) is

the semivariogram estimate for its corresponding group (interval) of distances.

Finally, we can fit a convenient parametric function (exponential, spherical, Gaussian,

etc.) to the estimated γ̂(dk) values – see [23] for details and examples. The main

goal of empirical semivariogram construction is to estimate and visualize the spatial

autocorrelation structure of the observed stochastic process. From figure 1.2, we can see

three main features of an estimated empirical semivariogram:

• nugget (nugget effect) describes the micro-scale variations or measurement errors

in data. Theoretically, at zero separation distance, γ(0) = 0. However, two factors

play a role here: First, γ(d1) is estimated over the N(d1) set of pairs, i.e. for the

first interval where dij ∈ (0, d1]. Second, fitting the empirical semivariogram curve

to observed values often causes the non-zero nugget.

• sill amounts to limd→∞ γ(d). The sill corresponds to variance of the stochastic

field at distances where spatial dependency (which reduces γ(d)) no longer applies.

Using (1.10), we can see that limd→∞ γ(d) = C(0) = var[Z(s)].

• range is the spatial distance (if any) beyond which the data are not autocorrelated.

In a way, range describes the strength of spatial structure – based on where the

12



1. Introduction

semivariogram “reaches” its asymptote (sill).

Figure 1.2.: Empirical semivariogram example. Source: [15].

Empirical semivariograms such as figure 1.2 reflect the fact that observations located

close together are more alike than those far apart: increasing “variance” (semivariogram

values) in pairwise differences along increasing d means decreasing spatial dependency

(i.e. there is an inverse relationship between distance and spatial autocorrelation).

1.3. Spatio-temporal data & analysis tools

This section generalizes the cross-sectional data & topics discussed in section 1.2 to

accommodate processes that have both spatial and temporal dimensions.

Environmental, geophysical and socio-economic processes are often observed repeatedly

over time. Such observations usually exhibit both spatial and temporal dependency and

variability. Given the frequency and density limitations of empirical measurements of

variables in continuous space and time, we often model our observations as realizations

of a spatio-temporal random function (random field)

Z(s, t), (s, t) ∈ Rd× R , (1.12)

where the spatio-temporal domain is indexed in space by s ∈ Rd and in time by t ∈ R.

The separation between spatial and time dimensions is substantial, which is reflected in

the notation used in (1.12).

13



1. Introduction

Assuming that second moments of of the spatio-temporal random field Z(s, t) exist and

are finite, the covariance function for two arbitrary observations Z(s1, t1) and Z(s2, t2)

is defined as

C(s1, s2; t1, t2) = cov[Z(s1, t1);Z(s2, t2)],

= E [{Z(s1, t1)− E[Z(s1, t1)]} {Z(s2, t2)− E[Z(s2, t2)]}] ,

(s1, t1), (s2, t2) ∈ Rd× R .

(1.13)

For empirical analyses of spatio-temporal data, some simplifying assumptions are often

necessary. Here, we shall briefly discuss the notions of stationarity, separability and

(full) symmetry.

Weak (second-order) stationarity: Z(s, t) is weakly stationary in space and time if

its mean function E [Z(s, t)] is constant for all (s, t) and its covariance function (1.13)

only depends on (orientated) spatial and temporal distances:

cov [Z(s1, t1), Z(s2, t2)] = C(s1 − s2, |t1 − t2|) , (1.14)

for all spatio-temporal coordinates (s1, t1) and (s2, t2) in Rd × R. Hence, under weak

stationarity, we may rewrite (1.14) for any arbitrarily chosen origin (s0, t0) ∈ Rd× R as

C(s0, s0 + h ; t0, t0 + t) = C(h, t) , (1.15)

where h and t are the spatial and temporal distances, respectively [47, 69].

Intrinsic stationarity: is based on the traditional approach of differencing observed

data in order to achieve a stationary process. The random field Z(s, t) as in (1.12) is

intrinsically stationary in space and time (has stationary increments in space and time)

if

Z(s0 + h ; t0 + t)− Z(s0; t0), (h, t) ∈ Rn× R (1.16)

is a weakly (second-order) stationary spatio-temporal process – i.e. stationary in space

and time for any origin (s0, t0). For an intrinsically stationary process Z(s, t), covari-

ance might not be well defined (see [69]), but spatio-temporal semivariograms (STSV)

is:

γ(h; t) =
1

2
var [Z(s0 + h ; t0 + t)− Z(s0; t0)] , (h, t) ∈ Rd× R. (1.17)

STSV (1.17) does not depend on the selection of origin (s0, t0) ∈ Rd×R (under intrinsic

stationarity). Also, for intrinsically stationary random fields Z(s, t), the STSV γ(h; t)

14



1. Introduction

is non-negative and γ(0; 0) = 0. Empirical STSVs and corresponding fitting algorithms

are described e.g. in [40] or [48], where both the theoretical derivation and empirical

application are provided.

Separability: This additional simplifying assumption states that a random field Z(s, t)

has a separable covariance if its spatio-temporal covariance can be factored into purely

spatial and purely temporal components and

C [Z(s1, t1), Z(s2, t2)] = CS(s1, s2) · CT (t1, t2) (1.18)

holds for all spatio-temporal coordinates (s1, t1) and (s2, t2) in Rd × R. As discussed

in [47], this assumption allows for computationally efficient estimation (simple inter-

polation, i.e kriging, or other types analyses) and inference. For this reason, separable

covariance assumption is commonly used even in situations where it isn’t fully justifiable

(see [69] for detailed discussion of separable spatio-temporal random fields).

Full symmetry: Spatio-temporal process Z(s, t) has a fully symmetric covariance if

cov [Z(s1, t1), Z(s2, t2)] = cov [Z(s1, t2), Z(s2, t1)] (1.19)

for all spatio-temporal coordinates (s1, t1) and (s2, t2) in Rd × R. Separability forms a

special case of full symmetry and spatio-temporal processes that are not fully symmetric

are not separable. Hence, tests for full symmetry can be used to reject separability [47].

Compactly supported covariance can be described as a spatio-temporal generaliza-

tion of “weak dependency” as in time series analysis or “range” in a semivariogram (see

Figure 1.2). Z(s, t) has a compactly supported covariance, if

cov [Z(s1, t1), Z(s2, t2)] = 0 ,

whenever ||s1−s2||, |t1− t2| or both are sufficiently large. Compactly supported covari-

ances allow for computationally efficient spatio-temporal analyses and predictions over

large datasets. Additional in-depth aspects of spatio-temporal data analysis are covered

in [47] or [69] and the estimation toolbox for R is provided in [77].
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2. Spatial econometrics: basic tools and

methods

Econometrics has evolved as a separate discipline of statistics (mathematical statistics)

and it typically uses non-experimental (natural, empirical) data for estimating economic

& socio-economic relationships, testing economic theories and other less structured as-

sumptions, forecasting and for evaluating economic policies. Spatial econometrics is a

specialized field of econometrics that combines methods of spatial statistics with eco-

nomic theories and observed (geo-coded) data in order to perform quantitative analyses

and related tasks.

The empirical existence of simultaneous spatial dependencies in observed data is the

central driving factor that justifies the use of spatial autoregressive models. Spatial

econometric models account for the presence of spatial effects (such as economic spill-

overs) when analyzing the relationships between variables through regression models

and other related estimation methods. Spatial quantitative models play an ever more

important role in regional macroeconomic and social analyses, real estate studies, agri-

cultural and ecological applications, epidemiology and in many other non-economic fields

of research.

This chapter provides a thorough overview of key topics and selected methods in spa-

tial econometrics. Besides including core methods, the selection is tailored to provide

theoretical background for subsequent (empirically oriented) chapters. The overview

provided is not exhaustive – for additional topics, please refer to [16], [28], [64] or [67]

and the literature referenced therein.

2.1. Spatial dependency

In spatial econometrics, data are associated with a particular position in space. Data

are geo-coded using the latitude/longitude geographic coordinates system, distances and

common borders are used for estimation of spatial dependencies. Spatial data can be

observed either at point locations (housing data, air pollution measurements, street
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2. Spatial econometrics: basic tools and methods

traffic, etc.) or aggregated over regular or irregular areas (e.g., countries, regions, states,

counties). Besides geo-coded cross sections, we often use spatial panel data and methods,

provided that cross sectional data observations can be consistently repeated over time.

As observed variables are combined with spatial definition, we may draw conclusions

about similarities or dissimilarities between spatially close objects. Fotheringham et al.

[41] define spatial dependency as follows:

“Spatial dependency is the extent to which the value of an attribute in one

location depends on the values of the attribute in nearby locations.”

Similarly, Legendre [65] defines spatial autocorrelation as

“. . . the property of random variables taking values, at pairs of locations

a certain distance apart, that are more similar (positive autocorrelation) or

less similar (negative autocorrelation) than expected for randomly associated

pairs of observations.”

Various descriptions and definitions of spatial dependencies in observed data exist, often

with emphasis on different aspects of the phenomena, due to different research scopes

(say, ecology vs. housing prices). However, for many empirical applications – including

microeconomic and macroeconomic analyses – spatial autocorrelations play an impor-

tant role and we need to adjust our theories and models to incorporate spatial aspects.

Figure 2.1 provides a simple illustration of spatial autocorrelation in observed 2014-

unemployment data: for the six countries considered (Czechia, Slovakia, Poland, Ger-

many, Austria and Hungary), NUTS2-level unemployment rates are clearly “clustered”,

with distinctive regional patterns and with noticeable spatial autocorrelation.

It may be argued that much of the spatial effects and dependencies are attributable to

omitted variable factors. However, spatial autocorrelation may be conveniently inter-

preted as a proxy for numerous real (theoretically sound), yet practically unobservable

spatial effects. Many spatial interactions and their dynamic features are very difficult

to explicitly define and properly structure in a way that would facilitate informative

and harmonized quantification. This applies to tasks such as consistently measuring

knowledge and skills diffusion (in labor-productivity models) or cross-border work com-

muting intensity and preferences (in unemployment-describing models), accounting for

administrative/qualification employment barriers between countries, quantifying the im-

pact of language differences, considering aerial distances vs. means of transportation,

etc. For many such variables, even if measurements are possible, they would inherently
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Figure 2.1.: Unemployment rates, 2014, NUTS2 regions. Source: Own calculation using
GISCO – Eurostat data.

introduce many subjective choices and – in practical terms – many disputable features

to quantitative models.

Spatial models often provide an intuitive, easily interpretable and functional approach

towards regional (macroeconomic) data analysis. Different authors postulate diverse

motivations and theoretic grounds for studying spatial effects, spatial dynamics and

dependencies. Some of the most common factors [67] driving spatial correlation may be

summarized as follows:

• Omitted variables motivation has been discussed in the preceding paragraph. Many

unobservable (latent) factors and location-related features such as highway accessi-

bility or neighborhood prestige may significantly influence the observed geo-coded

variables. In practice, it is unlikely that appropriate observable explanatory vari-

ables would be available to accurately describe such influences.
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• Time-dependency motivation is based on the premise that agents make decisions

that are influenced by the behavior of other agents in previous periods. For ex-

ample, local/regional/state authorities may set taxes or subsidies that reflect such

policy actions taken by their neighbors in previous periods. Similarly, at the in-

dividual level, house selling prices are often influenced by past selling prices of

neighboring houses (after controlling for other important factors such as surface

area and the number of bedrooms).

• Spatial heterogeneity motivation is largely based on panel data methods and regres-

sion models. Within the panel data framework, we use individual effects (individual

heterogeneity) that may be treated and interpreted as separate intercepts for each

cross-sectional unit. For spatial panel data (where geo-coded units are observed

for a number of repeated time periods), we may often conclude that spatially close

units exhibit more similar individual effects as compared to non-neighboring units.

• Externalities-based motivation comes from a well-established economic concept: in-

dividuals and regions may be subject to (both positive and negative) consequences

of economic activities exercised by unrelated third parties. Air pollution emitted

by a factory that spoils the surrounding environment affects life quality in nearby

residential areas and reduces property values is an example of a negative external-

ity. On the other hand, beautifully landscaped parks may have a positive effect on

the values of houses in the neighborhood.

• Model uncertainty motivation: spatial autocorrelation may be used in circum-

stances where we face uncertainty in terms of specifying a proper data generating

process (DGP). For example, in a regression model environment, estimation and

forecasting efficiency may often be improved by introducing spatial autocorrelation

to the regression – this applies to both the dependent variable and regressors as

well as to model errors.

In most empirical applications, finding the correct (most appropriate) motivation for an

observed spatial dependency is complicated. Partly, this is due to the fact that differ-

ent motivations are not mutually exclusive. Fortunately, this “identification problem”

rarely causes complications in empirical analyses. For a detailed overview and spatial

dependence taxonomy, see e.g. LeSage and Pace [67].
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2.2. Neighbors: spatial and spatial weights matrices

Two spatial units are considered neighbors if they are “close” enough in space (see discus-

sion next) to interact in terms of the associated (spatially defined) stochastic processes.

Spatial connectivity matrices S are based on dummy variables: the sij elements of S

equal 1 if the two spatial units i and j are neighbors and 0 otherwise. Diagonal elements

of S are set to zero by definition: units are not neighbors to themselves. Individual

elements of the symmetric spatial matrix S may be formally outlined as follows:

sij = sji =


0 if i = j,

0 if i 6= j and regions i and j are not neighbors,

1 if i 6= j and regions i and j are neighbors.

(2.1)

The elements of S are co-determined by the ordering of the data (spatial units), which

can be arbitrary. A simple 4-unit (4×4) example is provided next:

S =


0 1 1 1

1 0 1 0

1 1 0 1

1 0 1 0

 . (2.2)

From the first row (and column) of S in (2.2), we may observe that the first unit (say,

region or city) is a neighbor of units 2, 3 and 4; the second row shows that unit 2 is a

neighbor of units 1 and 3 (not a neighbor of unit 4), etc.

Cliff and Ord in [21], [22] have introduced a relatively flexible toolbox for spatial weights

specification. Spatial weights are usually calculated in a two-step approach: First, a

square spatial connectivity matrix S is established for a given set of N spatial (geo-

coded) units. Next, a corresponding spatial weights matrix W is constructed by row

standardization (scaling to unity), for use in spatial models such as (3.2) or (4.1). For

example, from the spatial matrix S in (2.2), we may construct the spatial weights matrix

W as follows:

W =


0 1

3
1
3

1
3

1
2 0 1

2 0

1
3

1
3 0 1

3

1
2 0 1

2 0

 . (2.3)
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IndividualW elements wij reflect the relationship intensity between cross sectional units

i and j. This topic is described in detail along equation (2.6).

As the number of spatial units and the dimension of S increase, we need to limit geo-

dependencies to a manageable (computable) degree. This can be done through a simple

stability condition stating that the correlation between two spatial units should converge

to zero as their distance increases to infinity.

Elhorst [28] provides two alternatives stability conditions that may be restated as follows:

(a) The row (and column) sums of any S matrix should be uniformly bounded in absolute

value as the number of spatial units goes to infinity. (b) The row (and column) sums of

S should not diverge to infinity at a rate equal to or faster than the rate of sample size

growth. Condition (b) is more general – if (a) hold, (b) is implied but not vice-versa.

Section 3.1 contains a formal discussion of this topic.

Different neighborhood definitions can be used for establishing S matrices and the cor-

responding weights matrices W . The most common approaches to defining neighbors

for spatial units are outlined next.

Contiguity-based neighbors

Contiguity approach is a theoretically simple (yet computationally convoluted) rule,

defining two units as neighbors if they share a common border. A generalization of this

approach is based on the premise that a “second order” neighbor is the neighbor of a first

order neighbor (the actual contiguous neighbor). With this type of approach, we can

define a maximum neighborhood lag (order) to control for the highest accepted number

of neighbors traversed (not permitting cycles) while determining the neighborhood of

the spatial unit under scrutiny.

Computational convolutions of the contiguity approach are due to small, yet frequent

topological inaccuracies in empirical maps (geo-data): spatial polygons may suffer from

different types of errors such as intersecting or diverging boundaries. Various discrepan-

cies may arise when spatial data are collected from different sources. Also, if a boundary

between two units lies along a median line of a river channel, then the polygons of

each unit would likely stop at the channel banks on each side. As a result, borders of

such river-separated regions are not actually contiguous – there is a non-zero distance

between them, corresponding to the width of the separating river (creek, lake, etc.).

There are many such minor factors that complicate the unambiguous and automated

(i.e. programmable) contiguity evaluation process. Therefore, heuristic approaches to
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evaluation of contiguity are often required [16].

If regular spatial patterns are used (chessboard-like tiles), we often distinguish between

queen and rook contiguity definitions (their names come from the movements of chess

pieces). Rook is a more stringent definition of polygon contiguity than queen. For rook,

the shared border must be of some non-zero length, whereas for queen the shared border

can be as small as one point. This contiguity is sometimes generalized to natural map

patterns: for example, using the queen rule, Arizona and Colorado are neighbors. Also,

contiguity-based neighborhood evaluation is somewhat specific for “hole” regions. In

the EU, there are several such NUTS2 level regions. In figure 2.1, we can see that

the region DE30 (Berlin) lies inside the region DE40 (Brandenburg). Similarly, CZ01

(Praha) is located within CZ02 (Stredni Cechy) and AT13 (Wien) is encompassed by

AT12 (Niederosterreich). For such regions, we either use the generalized (lag) approach

to contiguity or we turn to distance-based neighborhood definitions.

Distance-based neighbors

By adopting the distance-based approach, we construct spatial matrices by defining two

units as neighbors if their distance does not exceed some ad-hoc predefined threshold.

Formally, individual elements of S may be defined as follows:

sij = sji =


0 if i = j,

0 if hij > τ,

1 if hij ≤ τ,

(2.4)

where hij is some adequate measure of distance between units’ representative location

points (centroids) and τ is an ad-hoc defined maximum neighbor distance threshold.

Distances between regions as in (2.4) are measured using centroids – conveniently chosen

representative positions. Depending on model focus, data availability and researcher’s

individual preferences, centroids may be pure geographical center points (as in figure 2.2),

locations of main cities, population-based weighted positions, transportation network

based (highway/railway infrastructure, work-commuting intensities), etc.

Centroid-based distances are usually easy to calculate and evaluate against a chosen

threshold τ . However, there are two important issues that need to be considered: This

approach can generate “islands” (units with zero neighbors), unless the defined threshold

is greater than the maximum of first nearest neighbor distances as measured across all

units in the sample. Formally, the following conditions is sufficient to avoid islands (zero

22



2. Spatial econometrics: basic tools and methods

rows/columns in the S matrix):

τ ≥ max
i

min
j
{hij |hij > 0} .

Also, the threshold-based approach might be less convenient for analysis of regions with

uneven geographical density, i.e. with unequal sizes of units and distances between them.
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Figure 2.2.: Distance-based neighbors, 200 km threshold. Source: Own calculation using
GISCO – Eurostat data.

Using the same region as in figure 2.1, an illustration showing NUTS2 regions and their

neighborhoods is provided in figure 2.2 (pure geographical centroids of neighboring re-

gions are connected by lines). We may observe the uneven regional density by comparing

the complexity of the neighborhood connections in the western parts of Germany against

the sparse north-eastern regions in Poland. Geographical heterogeneity of the regions

in figure 2.2 is due to the fact that NUTS2 regions are bounded in terms of the number

of their inhabitants (800,000 to 3 million) and there are prominent differences among

geographical areas of Germany (densely populated small regions) on one hand and the
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NUTS2 units in Poland and Hungary on the other hand.

The symmetric S matrix (82×82) used to render figure 2.2 is omitted here, yet it may

be briefly described as follows: given the maximum neighbor distance threshold of 200

km, the average number of neighbors is 8.85, PL34 (Podlaskie) is the the least con-

nected region with 2 neighbors only while DE72 (Giessen) is the most connected with

17 neighbors.

k-nearest neighbors

To define neighbors, we can apply the k -nearest neighbors (kNN) approach: for each spa-

tial unit, we search for a preset number of k nearest units that we define as its neighbors.

This method conveniently solves for differences in areal densities (k neighbors are en-

sured for each unit), yet it usually leads to asymmetric spatial matrices with potentially

flawed neighborhood interpretation (simple transformation algorithms for asymmetric

spatial matrices are available, e.g. from [16]). The symmetry of spatial matrix S has a

strong impact on subsequent spatial econometric analysis. For a symmetric matrix, all

eigenvalues are real. Importantly, this holds even after row standardization (i.e. for W )

– see chapter 3.3 for detailed discussion.

Also, it should be noted that under the kNN approach, individual S and W elements

will depend on sample size. As we remove or add one or more spatial units to our sample

(e.g. by including new country or region of interest), the group of k nearest neighbors

for each unit in the sample may change significantly – leading to potentially significant

changes in the estimated spatial dynamics.

Software and data for spatial analysis

Spatial matrix construction often requires extensive geographical datasets and special-

ized software. Fortunately, many such tools are freely available. Geodata for all coun-

tries and most of their administrative areas at different aggregation levels are avail-

able from GADM: www.gadm.org. For EU countries, a complete and consistent set

of geodata may be obtained from Eurostat’s GISCO: the Geographic information sys-

tem of the commission: http://ec.europa.eu/eurostat/web/gisco/. Data analy-

sis combining geographical and economic (environmental, epidemiology, etc.) infor-

mation may be conveniently performed using the free and open source environments

such as R: www.r-project.org, Python: www.python.org or Octave: www.gnu.org/

software/octave/. From the category of comercially available software packages, Mat-

Lab: www.mathworks.com/products/matlab and Stata: www.stata.com feature tools
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for estimation of spatial models. Unless stated otherwise, all examples, figures and em-

pirical analyses presented here are produced using R software and Eurostat datasets

(both geographic and macroeconomic).

Spatial weights matrices

Construction of a spatial weights matrix W is based on row-standardizing the spatial

connectivity matrix S (with sij elements as binary neighborhood indicators), so that all

rows in W sum to unity. As a direct consequence of this transformation, all elements

of W in a given row lie within the [0, 1] interval and can be used to calculate spatially

determined expected values of yi. The spatial lag (spatially determined expectation) for

an i-th element of y is given by

SpatialLag(yi) = wiy , (2.5)

where wi is the i-th row of W . Say, y is a 4-element vector with spatial properties

determined by S and W as in expression (2.2). Hence, expanding on our sandbox

example given by matrices (2.2) – (2.3), the spatial lags of y may be written as

SpatialLag(y) = Wy =


0 1

3
1
3

1
3

1
2 0 1

2 0

1
3

1
3 0 1

3

1
2 0 1

2 0




y1

y2

y3

y4

 =


1
3y2 + 1

3y3 + 1
3y4

1
2y1 + 1

2y3

1
3y1 + 1

3y2 + 1
3y4

1
2y1 + 1

2y3

 . (2.6)

Note that the row elements of W display the impact on a particular spatial unit, con-

stituted by all other units. The weighting operation shown in (2.6) can be interpreted

as averaging across observations in neighboring units. Similarly, column elements in W

describe the impact of a given unit on all other units. Because each row of W is nor-

malized by a different factor, spatial weights are often asymmetric: the impact weight

of unit i on unit j is not always the same as of unit j on i.

Moran plot

Figure 2.3 follows from the empirical example introduced in figures 2.1 and 2.2. Here, the

observed values of unemployment are plotted against their spatial lags – this plot is often

referred to as Moran plot (Moran scatter-plot). TheW matrix (82×82) used in spatial lag

(2.5) calculation of unemployment for figure 2.3 comes from the neighborhood definition

as shown in figure 2.2. We can see that the scatter-plot “pairs” are well aligned along the
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Figure 2.3.: Moran plot for unemployment rate, 2014: observed values vs. spatial lags.
Source: Own calculation.

“regression line”. This provides visual evidence for a significant spatial autocorrelation

in the data. See [4] for additional empirical discussion and spatial lag evaluation.

Generalized weights matrices

Spatial lag construction as in expressions (2.5) and (2.6) is straightforward. However,

with increasing variance in units’ neighbor-count (e.g. for distance-based neighbors

with uneven geographical density), this widely adopted approach suffers from allocating

uneven weights (influence), based on the number of neigbors of a given unit. To overcome

this drawback, sometimes the non-zero elements in W are “generalized” before the row-

standardization.

Distances to neighbors can be used to reflect some prior information concerning the

spatial dependency processes: often we assume that spatial influences are inversely pro-

portional to distances (linear, quadratic or other functional forms of influence decay may

be used). For example, W construction may be based on a “truncated distance matrix”
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C, defined as

C = S ◦H ,

where S and its elements are defined in (2.4), H contains pairwise hij distances and ◦
is the Hadamard (element-wise) product. Hence, C is a non-negative symmetric matrix

with zeros on the main diagonal and its individual cij elements equal either 0 or hij ,

depending on whether si and sj are neighbors. Different transformations of cij elements

may be used to produce the W weights matrix. Using prior information regarding the

inverse relationship between distance and interaction intensity, wij elements may be

based on transformed non-zero cij elements: (1/cij), (1/c2ij), (1/ log cij), etc. are often

used for row-standardization while keeping the zero elements from C. If hij describes

interaction intensity (e.g. commuting volume) instead of distance, W elements may be

given as wij = cij/
∑

j cij .

The above described approach has been empirically verified in many applications [65].

For example, when analyzing employment/unemployment dynamics, labor force com-

muting habit dynamics in densely vs. sparsely populated areas may be modeled substan-

tially better using this approach. However, the efficiency of any such W generalization

crucially depends on the accuracy and validity of the prior information (decay pattern)

used.

Many additional alternatives exist for the classical approach to W construction through

individual row standardization of S, described by expression (2.2). For example, Griffith

et al. [51] use a single-factor normalization – see expression (3.27) and corresponding

discussion for details.

2.3. Sample selection in spatial data analysis

Spatially autocorrelated processes are defined in terms of individual units and their

interaction with corresponding neighbors. Clearly, we can only assess the impact of

neighboring units if such units are part of our sample. Hence, in spatial econometrics,

we usually do not draw limited samples from a particular area.

Instead, we work with cross-sectional (or spatial panel) data from adjacent units located

in unbroken (“complete”) study areas. Otherwise, S and W matrices would be mislead-

ing and we could not consistently estimate spatial interactions and effects. Generally

speaking, spatial analysis should include the whole geographically defined area/region

instead of using random sampling (from a “population” of regions within the relevant

area).
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2.4. Spatial dependency tests

Two basic types of spatial dependencies exist (as opposed to spatial randomness): posi-

tive spatial autocorrelation occurs if high or low values of a variable cluster in space. For

negative spatial autocorrelation, spatial units tend to be surrounded by neighbors with

very dissimilar observations. Sometimes, spatial dependency patterns are easy to dis-

cern visually using choropleths such as figure 2.1. However, a formal approach towards

evaluation of spatial dependency is often required.

Before the actual estimation of spatially augmented econometric models, we should

apply preliminary tests for spatial autocorrelation in the observed data. Many types of

spatial autocorrelation test statistics are available, such as those presented by Anselin

and Rey in [6]. Here, we only focus on the most used statistics for cross-sectional data

as introduced by Moran, Geary and Getis.

Moran’s I

First introduced by Moran in [73], Moran’s I is a measure of global spatial autocorrela-

tion that describes the overall clustering of the data:

I =
N

W
z′Wz(z′z)−1, (2.7)

where N describes the number of spatial observations (units) of the variable under

scrutiny (say, y), z is the centered form of y; it is a vector of deviations of the variable of

interest with respect to its sample mean value such that zi = yi− ȳ. The standardization

factor W =
∑

i

∑
j wij corresponds to the sum of all elements of the spatial weights

matrix W . For row-standardized W matrices, N
W = 1. However, in its original form,

Moran’s I does not require row-standardized weights. Instead of W , we might use the

spatial matrix S in expression (2.7) as well.

In most empirical circumstances, I ∈ [−1, 1]. The actual lower and upper bounds to I are

given by (N/ι′Wι)κmin and (N/ι′Wι)κmax where κmin, κmax are extreme eigenvalues1

of the double-centered connectivity matrix

Ω = (IN −
1

N
ιNι

′
N )S (IN −

1

N
ιNι

′
N ) ,

1Here, as well as in equation (3.29), etc., we deviate from the the common notation λ for eigenvalues as
used in linear algebra and use κ instead. Throughout this text, λ is used as a spatial autocorrelation
coefficient.
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where ι is a (N×1) vector of ones. If yi observations follow iid normal distribution (i.e.

under the null hypothesis of spatial randomness), Moran’s I is asymptotically normally

distributed with the following first two moments (see [25] or [83] for derivation):

E(I) = − 1

N − 1
(2.8)

and

var(I) =
N2W1 −NW2 + 3W 2

(N2 − 1)W 2
, (2.9)

where W comes from (2.7), W1 =
∑

i

∑
j(wij +wji)

2 and W2 =
∑

i(
∑

j wij +
∑

j wji)
2.

Given the normality assumption in yi, we can calculate a z-score

z =
I − E(I)√

var(I)
, (2.10)

test for statistical significance of Moran’s I statistic (2.7): whether neighboring units

are more similar (I > E(I)) or more dissimilar (I < E(I)) than they would be under

the null hypothesis of spatial randomness.

Kelejian and Prucha [62] have demonstrated that standardized Moran’s I has an asymp-

totically normal distribution under various assumptions on yi variables: they provide a

more general set of expressions (2.7) – (2.9) where sample normality of Moran’s I z-score

holds for a variety of important variable types: yi can be dichotomous, polychotomous

(multinomial) or count variable, as well as “corner-solution response” (see [85] for de-

scription of Tobit-type models).

Moran’s I spatial dependency analysis yields only one statistic that summarizes the

nature of spatial dependency in the observed variable. In other words, Moran’s I as in

(2.7) assumes geographical homogeneity (stationarity) in the data. If such assumption

does not hold and the actual spatial dependency patterns vary over space, then Moran’s

I test loses power and the “global” statistic (2.7) is non-descriptive.

The fact that Moran’s I is a summation of individual crossproducts (not outright appar-

ent from the matrix notation in (2.7), see [2] for derivation) is exploited in an alternative

spatial dependency test based on the Local Moran’s I statistic (row-standardized W as-

sumed):

Ii =
ziN

z′z
wiz . (2.11)

The expected value of Local Moran’s I under the null hypothesis of no spatial autocor-

relation is: E(Ii) = −wi/(N − 1). Here, wi is the sum of elements in the i-th row of W .
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For row-standardized weights matrices, wi = 1. Values of Ii > E(Ii) indicate positive

spatial autocorrelation, i.e. that the i-th region is surrounded by regions that, on aver-

age, are similar to the i-th region with respect to the observed variable y. Ii < E(Ii)

would suggest negative spatial autocorrelation: on average, the i-th region is surrounded

by regions that are different with respect to the observed variable. Local Moran’s I val-

ues as in (2.11) are calculated for each spatial unit and the statistical significance of

spatial dependency is then evaluated using var(Ii) and the corresponding z-score [2].

By comparing (2.7) and (2.11), we may see the global nature of Morans I from

I =
1

N

N∑
i=1

Ii . (2.12)

Moran’s I (2.7) is often used for testing spatial dependency in regression model residuals.

Please note that zi = yi − ȳ from (2.7) may be recast as a residual part from a trivial

regression model yi = β0 + zi, where β0 is the intercept (β̂0 = ȳ) and zi is the random

element. Once the trivial model is expanded by a convenient set of regressors, Moran’s

I can be used for testing regression residuals [21].

Geary’s C

Geary’s C is another test statistic for evaluation of spatial autocorrelation in geo-coded

variables. It depends on the (absolute) difference between neighboring values of observed

spatial variables. In principle, Geary’s C is a variance test similar to the Durbin-Watson

test statistic for residuals’ autocorrelation in time-series regressions [85]. For a spatially

determined variable y, Geary’s C is calculated as:

C =
N − 1

2W

∑
i

∑
j wij(yi − yj)2∑
i(yi − ȳ)2

, (2.13)

where N , W , wij , etc. elements follow from previous section. Empirical Geary’s C

values range from 0 to 2, however Griffith [52] shows that rare occurrences of C > 2 are

possible. Under the null hypothesis of no spatial autocorrelation, the first two moments

of Geary’s C are:

E(C) = 1 , var(C) =
(N − 1)(2W1 +W2)− 4W 2

2(N + 1)W 2
, (2.14)

where all elements have been introduced in (2.9). Positive spatial dependency leads

to C values lower than 1 and negative spatial autocorrelation is reflected in C values
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greater than 1. Similarly to Moran’s I, the z-transformation of Geary’s C is asymptoti-

cally normally distributed. Therefore, z(C) can be used for testing spatial randomness.

Significant z(C) < 0 values lead to H0 rejection in favor of positive spatial autocorre-

lation: there is evidence of “more similar” i.e. spatially clustered values of the variable

y than they would be by chance. Also, significant z(C) > 0 values provide statistical

evidence for negative spatial autocorrelation: i.e. a “lack” of similar (high/low) values

of yi observed across neighbors as compared to a random spatial distribution.

Getis’ G: spatial clusters and hotspot analysis

Clustering analysis by Getis can only be performed for positively autocorrelated spatial

data (where spatial units with high values of a given variable tend to be surrounded by

other high observations and vice versa).

Local G: Gi(τ) statistic measures the degree of spatial association – for each yi from a

geo-coded sample, we can calculate a Local G statistic as

Gi(τ) =

∑N
j=1 sij(τ) yj∑N

j=1 yj
, j 6= i , (2.15)

where sij(τ) comes from (2.1) and sij(τ) = 1 if the distance between distinct units i

and j is below the (arbitrary) threshold τ – i.e. if i and j are neighbors – and it is

zero otherwise. Observations of variable y are assumed to have a natural origin and

positive support [46]. For example, it would be innapropriate to use Gi(τ) for analysis

of residuals from a regression. The numerator of (2.15) is the sum of all yj observations

within distance τ of unit i, but not including yi. The denominator is the sum of all yj

in the sample, not including yi. Hence, Gi(τ) is a proportion of the aggregated yj values

that lie within τ of i to the total sum of yj observations. For example, if we observe high

values of yj within distance τ of unit i, then Gi(τ) would be relatively high compared

to its expected value under the null hypothesis of full spatial randomness:

E [Gi(τ)] =
Si

N − 1
, (2.16)

where Si is the sum of elements in the i-th row of spatial matrix S, i.e. the number of

neighbors of i. Again, N is the total number of spatial observations in the sample. Also,

under the H0 of spatial randomness, we can write

var [Gi(τ)] =
Si(N − 1− Si)

(N − 1)2(N − 2)

(
Yi2
Y 2
i1

)
, (2.17)
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where Yi1 =
∑

j yj
N−1 and Yi2 =

∑
j y

2
j

N−1 − Y
2
i1.

A common modification to the Gi(τ) statistic consists in dropping the j 6= i restriction

from (2.15). Such Local G statistic is usually denoted by G∗i (τ) and the values of yi

enter both its numerator and denominator expressions. Under spatial randomness, the

expected value and variance of G∗i (τ) are defined as:

E [G∗i (τ)] =
S∗i
N
, (2.18)

var [G∗i (τ)] =
S∗i (N − S∗i )

N2(N − 1)

(
Y ∗i2

(Y ∗i1)
2

)
, (2.19)

where S∗i = Si + 1, Y ∗i1 =
∑

j yj
N and Y ∗i2 =

∑
j y

2
j

N − (Y ∗i1)
2 ; the condition j 6= i is dropped.

Usually, Gi(τ) or G∗i (τ) statistics are not reported directly. Instead, a convenient z-

transformation is used. For example, “Getis-Ord Local G∗”: statistic G∗i is calculated

(i 6= j dropped here):

G∗i =
G∗i (τ)− E [G∗i (τ)]√

var [G∗i (τ)]
, (2.20)

We can see that G∗i is a “local” indicator. For an approximately normally distributed

G∗i (τ), (2.20) readily indicates the type and statistical significance of clustering: As

G∗i statistics (2.20) are calculated for each spatial unit, high positive G∗i (z-score for

an i-th unit) indicates a hot-spot – a significant concentration of higher-than-average

values in the neighborhood of i, and vice versa. A z-score near zero indicates no such

concentration.

To determine statistical significance for a given N and significance level chosen, G∗i is

compared to critical values as provided by Getis and Ord in [46]. Say, for N = 100 and

α = 5%, the z-scores would have to be less than -3.289 for a statistically significant cold

spot or greater than 3.289 for a statistically significant hot spot. As an example, we

can use the 2014 unemployment data from figure 2.1 to search for hot spots and cold

spots of unemployment. At the 5% significance level, we find one unemployment hot

spot: an area with a statistically significant concentration of high unemployment values.

This hot spot is shown as red-colored units in figure 2.4. Similarly, we identified one

unemployment cold spot (low-unemployment cluster). This cold spot is marked blue in

figure 2.4.

A general (i.e. not local) statistic of overall spatial concentration G(τ) can be con-

structed. G(τ) evaluates all pairs of values yi and yj such that units i and j are within
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Figure 2.4.: Hot spots and cold spots: Unemployment rate, 2014. Source: Own calcula-
tion using GISCO – Eurostat data.

the τ distance of each other (i 6= j condition is usually applied). G(τ) interpretation

is well comparable to other global statistics, such as Moran’s I (see next paragraph for

details). G(τ) is defined as

G(τ) =

∑N
i=1

∑N
j=1 sij(τ) yi · yj∑N

i=1

∑N
j=1 yi · yj

, j 6= i . (2.21)

Again, the test for statistical significance of overall spatial clustering is based on a

z-score, where we use the expected mean value

E[Gi(τ)] =

∑N
i=1

∑N
j=1 sij(τ)

N(N − 1)
, j 6= i , (2.22)
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and variance:

var [G(τ)] = E
[
(Gi(τ))2

]
−

[∑N
i=1

∑N
j=1 sij(τ)

N(N − 1)

]2
, j 6= i . (2.23)

Expression (2.22) is the ratio of observed neighbors (actual count of neighbors) to all pairs

of spatial units (all potential neighbors) in the dataset, given τ -threshold and assuming

that units are not neighbors to themselves. Gi(τ) in (2.22) comes from expression (2.15)

and the derivation of variance formula (2.23) is provided e.g. in [46].

Comparison of spatial dependency statistics

Despite the fact that all spatial statistics mentioned in this section reflect dependency

and non-random patterns in observed spatial data and often provide similar test results,

they are not entirely redundant. While Moran’s and Geary’s statistics concentrate on

covariances, Getis’ global indicator is based on sums of products. Carrying out different

spatial dependency tests – i.e. focusing on different aspects of a (potentially unobserv-

able) spatial dependency pattern can be informative: specific types of spatial settings

may lead to disparities in spatial dependency test results. For example, Moran’s I does

not discriminate between patterns that have high (or low) values concentrated within

the τ -defined neighborhood (i.e. among hot-spots and cold-spots under positive spatial

autocorrelation), while Getis’ Gi(τ) performs well in this respect. On the other hand –

given Gi(τ) construction (natural origin and positive support of the underlying variable)

– it is not suitable for evaluating spatial dependency in variables such as residuals from

a regression (Moran’s and Geary’s statistics can be used for such purpose).

Some general limitations apply to all spatial tests discussed in this chapter:

• None of the statistics is well suited for discerning random observations from spa-

tially dependent data with relatively small deviations from the mean.

• Transformations of the observed spatial variables (e.g. changing measurement

units, log-transformation) can result in different values of the statistics.

• If τ -threshold is too low or too high (relatively speaking), the normal approxima-

tion and z-score based tests may be inappropriate.

Various different spatial dependency statistics and tests have been developed in order

to overcome the above general shortcomings – many such tools (usually specialized, i.e.

not generally applicable) are available e.g. from [6].
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cross-sectional data

The basic linear regression model (no spatial interactions) for cross sectional data is

often denoted as

y = αι+Xβ + ε , (3.1)

where y is a (N×1) vector of dependent variable observations, α is the intercept and ι is

a (N×1) vector of ones, X is a (N×k) matrix of exogenous regressors, β is a (k×1) vector

of corresponding parameters and ε is a (N×1) vector of error elements. Assumptions

and methods for model estimation, statistical inference and interpretation are available

e.g. from [84] or [85]. Usually, model (3.1) is estimated using ordinary least squares

(OLS).

Within the standard spatial model environment, three different spatial interaction types

need to be considered: spatial interaction effects among observations of the endogenous

(dependent) variable, interaction effects among regressors and interactions among error

terms.

Using a modified notation from [28], we can generalize (3.1) into a fully spatial specifi-

cation of a linear regression model (cross-sectional data) as follows:

y = λWy + αι+Xβ +WXθ + u ,

u = ρWu+ ε ,
(3.2)

where Wy is the spatial lag such as (2.6), WX is the spatial lag for regressor matrix X

and Wu describes spatial interactions (spatial lag) among disturbance elements. Scalars

λ and ρ as well as the (k×1) vector θ are the spatial parameters of the model to be

estimated along with α and β. Since (3.2) includes all the possible spatial interaction

types, Elhorst [28] refers to this model as the generalized nesting spatial model (GNS

model).
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We should also note that there is only one weights matrix W (N×N) specification in

the above GNS model. However, the GNS model may be generalized even further by

allowing different W matrices for each of the y, X and u lag elements (say, denoted

as W y,WX and Wu). This may be appropriate for applications where significantly

diverse spatial interactions occur – see e.g. [62] and [67]. However, in most practical

applications, we simply assume a common W for the whole model.

Using various assumptions, the GNS model may be simplified into more specific (nested)

types of spatial models. A complete taxonomy is provided e.g. in [28] and reproduced

in appendix A.1 for readers’ convenience. Here, we only cover in detail three of the most

common and empirically useful spatial model specifications.

Spatial lag model

By assuming that spatial interactions affect only the dependent variable, i.e. by assuming

θ = 0 and ρ = 0, we simplify the GNS model into a spatial lag model (SLM). Here, the

endogenous variable is the only element with a significant spatial lag:

y = λWy + αι+Xβ + ε . (3.3)

The SLM specification is used commonly throughout empirical literature, e.g. in models

describing taxes imposed by governments (see [28] for other examples). The reduced

form of (3.3) is

(IN − λW )y = αι+Xβ + ε , (3.4)

where IN is an (N ×N) identity matrix and the RHS regression coefficients explain

the variability of individual yi observations that is not explained spatially. Also, if the

inverse to (IN − λW ) exists, we can simply transform (3.4) into

y = (IN − λW )−1(αι+Xβ + ε) . (3.5)

Equation (3.5) is often referred to as the data generating process (DGP) for y – see [67].

Spatial Durbin model

If we drop the simplifying assumption θ = 0 from the SLM (3.3), thus allowing for spatial

interactions in exogenous variables, we get the spatial Durbin model (SDM) specification

y = λWy + αι+Xβ +WXθ + ε . (3.6)
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The only difference between SDM and GNS models is the absence of spatial interactions

in the error term. For SDM, we assume that the observed variable yi in a given unit

si is affected by the endogenous spatial lag Wy (i.e. values of y in neighboring regions

have effect on yi), by exogenous regressors for the i-th region (the i-th row in X) as

well as by exogenous regressors in neighboring regions (through the WXθ element). For

example, if yi describes aggregate household income in a region i, then such income is

influenced by incomes (say, wages) in neighboring regions and by both “domestic” and

neighboring rates of unemployment, labor force productivities, etc. For an illustrative

list of empirical applications of the SDM, see e.g. [78].

By analogy to the SLM case – and given (IN − λW )−1 exists – we may re-formulate

(3.6) in terms of the DGP as follows:

y = (IN − λW )−1(αι+Xβ +WXθ + ε) . (3.7)

Spatial error model

The spatial error model (SEM) is another frequently used specification of the spatial

model. SEM is obtained from the GNS model by assuming λ = 0 and θ = 0. Hence,

spatial interactions take place only among the error terms:

y = αι+Xβ + u ,

u = ρWu+ ε .
(3.8)

Theoretical (say, macroeconomic) reasoning of the spatial dependency is not required for

SEMs – this approach can be used to model a situation where endogenous variables are

influenced by exogenous factors that are omitted from the main equation and spatially

autocorrelated. Alternatively, unobserved shocks may follow spatial pattern(s).

3.1. Estimation, testing and interpretation of cross sectional

spatial models

Model stability and stationarity conditions for λ, ρ and W

Elhorst [28] and Kelejian and Prucha [60, 61], provide formal assumptions (some of

which were already mentioned in section 2.2), generally applicable to the three subtypes

of our GNS model specification (3.2). Please note that stability assumptions concerning

the spatial weights matrix W are usually based on the spatial (connectivity) matrix S
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(2.1). Also, for the SDM-related exogenous and spatially lagged element WXθ, we only

need to observe stability conditions for W [28].

Spatial model stability conditions may be formalized as follow:

1. Spatial matrix S – such as (2.1), yet other connectivity definitions may be used as

well – is a non-negative matrix of known constants with zeros on the diagonal. If

S meets this condition, it holds for the row-standardized W matrix as well.

2. Spatial weak dependency holds. This means that correlation between two spatial

units converges to zero as the distance between the two units increases. In terms

of the S matrix environment, this condition is often formalized into one of the

following two conditions: (a) The row and column sums of S should be uniformly

bounded in absolute value as N (the number of observed units) goes to infinity.

(b) The row and column sums of S should not diverge to infinity at a speed equal

to or faster than the growth of sample size N .

Condition (b) is more general (relaxed) and (a) may be interpreted as its special

case. Elhorst [28] provides detailed technical discussion and examples related to

both alternatives.

3. Matrices (IN − λW ) and (IN − ρW ) – used for estimating parameters from (3.5),

(3.7) or (3.8) – are non-singular. If the underlying S matrix is symmetric and non-

negative, this condition is satisfied whenever λ and ρ lie within the (1/κmin, 1)

interval, where κmin denotes the smallest (most negative) real eigenvalue of W

and 1 is the largest eigenvalue for a row-standardized W.

Please note that for a symmetric non-negative S matrix, all eigenvalues are real.

Even if such S matrix is subsequently row-standardized into the spatial weights

matrix W, the characteristic roots of this non-symmetric W would remain purely

real. Even if the S matrix is not symmetric (say, in the kNN case discussed in

section 2.2), the same conditions for λ and ρ apply: they should stay within the

(1/κmin, 1) interval, where κmin is the most negative purely real eigenvalue of W.

Using a slightly different approach, Kelejian and Prucha [60, 61] argue that λ and

ρ should lie within the (−1, 1) interval.

Maximum likelihood estimation of SLMs and SDMs

The RHS regressor element Wy in equation (3.3) is correlated with the error term.

Hence, ordinary least squares (OLS) estimation of models with spatially lagged endoge-
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nous variables yields biased and inconsistent estimates of regression parameters and

standard errors. In contrast, maximum likelihood (ML) estimators for such models are

consistent [63]. Therefore, we shall focus on ML estimators here. For other estimation

methods (two-stage least squares, generalized method of moments) and related topics,

including the Bayesian estimation of spatial models, see e.g. [18], [28] or [67].

We use a slightly modified notation from [67] to describe the single ML estimator used

for both SLMs and SDMs specifications, as their likelihood functions coincide (SLM is

a special case of SDM, with a restriction θ = 0 imposed). First, we expand the DGP

(3.7) by iid normality assumption for residuals:

y = (IN − λW )−1(αι+Xβ +WXθ + ε) ,

ε ∼ N(0, σ2ε IN ) ,
(3.9)

where σ2ε is the variance of ε. Using substitutions Z = [ι ,X ,WX] and δ = [α ,β ,θ]
′
,

we can re-write the SDM equation (3.6) as

y = λWy +Zδ + ε . (3.10)

Now, model (3.9) may be written as:

y = (IN − λW )−1Zδ + (IN − λW )−1ε ,

ε ∼ N(0, σ2ε IN ) .
(3.11)

The above substitution allows us to use a single likelihood function for both SLM and

SDM: for SDMs, we use Z = [ι ,X ,WX]. For SLMs, Z = [ι ,X] and analogous

amendments are made to the vector of parameters δ. Following the approach derived in

[3] or [67], the log-likelihood function for the SLM (and SDM) model may be outlined

as

LL(λ, δ, σ2ε) = −N
2

log(πσ2ε) + log |IN − λW | −
e

′
e

2σ2ε
,

e = y − λWy −Zδ ,
(3.12)

where N is the number of spatial units, |IN − λW | is the determinant of this N×N
matrix, e is a vector of residuals and the row-standardized spatial weights matrix W

has real eigenvalues only. For λ, the above discussed assumption λ ∈ (1/κmin, 1) applies.

However, in many practical applications, this range is reduced even further by allowing

for positive spatial autocorrelation only: λ ∈ (0, 1).
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Direct estimation (maximization) of (3.12) is subject to multiple computational issues.

Hence, alternative approach is used: technical description of the iterative ML maxi-

mization of (3.12) by means of concentrated log-likelihood functions is provided e.g. in

[67].

Maximum likelihood estimation of SEMs

To estimate SEM parameters by the ML method, we use a similar approach as in (3.9):

after adding iid normality assumption to ε residuals of the model (3.8), we may write

the DGP as
y = Xβ + (IN − ρW )−1ε ,

ε ∼ N(0, σ2ε IN ) ,
(3.13)

where the intercept term has been incorporated into the Xβ expression for simplicity.

Now, the full (not concentrated) log-likelihood function for SEMs has the form

LL(β, ρ, σ2ε) = −N
2

log(πσ2ε) + log |IN − ρW | −
e

′
e

2σ2ε
,

e = (IN − ρW )(y −Xβ) .

(3.14)

Again, for computational reasons, concentrated log-likelihood functions are calculated

iteratively to maximize (3.14) and thus to obtain parameter estimates and corresponding

standard errors.

The ML functions (3.12) and (3.14) may be amended to accommodate binomial, count,

multinomial and other types of dependent variables – see [11] and [67] for technical

discussion.

Evaluation and comparison of estimated spatial models

Once a spatial model is estimated, we often need to evaluate its overall performance.

Usually, models estimated by the ML approach are evaluated using information criteria

such as the Akaike information criteria (AIC) or Bayesian information criteria (BIC) as

discussed in [85]. Alternatively, the maximized log-likelihood values of (3.12) or (3.14)

may be used for testing.

Likelihood ratio (LR) test (3.15) can be used to evaluate the relevance of spatial model

specification through a set of conveniently chosen restrictions leading to two alternative

nested models. For example, we can start with a regression model featuring spatial

autocorrelation and compare its performance against a simplified (nested) specification,
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where spatial interactions are excluded by zero restrictions on the corresponding coeffi-

cients. The LR statistic has the following form:

LR = 2(Lur − Lr) ∼
H0

χ2
q , (3.15)

where Lur is the maximized log-likelihood function of the estimated spatial model, (3.12),

(3.14), etc. The null hypothesis is used to impute zero restriction on all parameters

describing spatial autocorrelation (λ, θ or ρ – given specification of the unrestricted

model). Therefore, Lr is the maximized log-likelihood of an estimated restricted (i.e.

non-spatial) model such as (3.1). Parameter q describes the degrees of freedom of the

χ2
q distribution and it equals to the number of parameter restrictions imposed. Under

H0 of insignificant spatial effects, the LR statistic approximately follows χ2
q distribution

and the usual p-values may be used for testing H0 against the alternative of significant

spatial effects.

In principle, information criteria and LR statistics might be used to compare the gen-

eral spatial specification of GNS models with different nested specifications (say, SLM

or SEM). However, more efficient techniques to choose between SLM and SEM specifi-

cations exist: “focused” Lagrange multiplier tests are discussed next.

Model specification tests: SLM vs SEM

When testing spatial autocorrelation in regression models, Florax and Nijkamp [36]

distinguish two basic types of tests: diffuse and focused. Diffuse tests simply reflect

whether the residuals are spatially correlated. For example, Moran’s I (2.7) is a diffuse

test and it can be used for testing spatial randomness in residuals from an estimated

regression model such as (3.1):

I =
N

W
û

′
Wû(û

′
û)−1 , (3.16)

where û is a N×1 vector of residuals (geo-coded data) from an estimated model. By

analogy to Moran’s I (2.7), statistical inference is based on the asymptotic normality of

(3.16) and the corresponding z-score (2.10) as in [3].

The following Lagrange multiplier (LM) tests are focused – have an informative alter-

native hypothesis where the null hypothesis of a non-spatial model is tested against the

alternatives of SEM or SLM specification, respectively [36]. Lagrange multiplier test for

SEM specification (3.17) evaluates the null hypothesis of no spatial autocorrelation of
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residuals against the alternative of spatial autocorrelation in the residuals (i.e. against

the SEM specification):

LM-SEM =
1

T

(
û

′
Wû

σ̂2

)2

∼
H0

χ2
1 , (3.17)

where σ̂2 is the ML-estimated variance of residuals û and T = tr(W
′
W+W 2) is trace of

the matrix. Under the null hypothesis, the LM-SEM statistic asymptotically follows χ2

distribution with one degree of freedom. Please note that the LM-SEM statistic (3.17)

is just a scaled version of Moran’s I (3.16).

Similarly, the LM-SLM statistic is used in OLS-estimated linear models to test H0 of

spatial independence in y against the alternative of its spatial autocorrelation (SLM

specification):

LM-SLM =
1

N Jλ,β

(
û

′
Wy

σ̂2

)2

∼
H0

χ2
1 , (3.18)

where the term Jλ,β =
[
(WXβ̂)

′
M(WXβ̂) + T σ̂2

]
/Nσ̂2 is calculated using the vector

of OLS-estimated parameters β̂ and the “residual maker” (orthogonal projection matrix)

M = IN − X(X
′
X)−1X

′
. Under H0, LM-SLM (3.18) has the same χ2

1 asymptotic

distribution as LM-SEM (3.17) – see [49] for technical discussion and derivation of the

tests.

The above LM-SEM and LM-SLM tests are not robust to misspecification: when testing

for spatial autocorrelation in the dependent variable, the LM-SLM statistic may be

severely biased as a result of an autocorrelated error term and vice versa. To address this

issue, Anselin [1, 5] introduced LM tests that are robust against local – as in expression

(2.11) – misspecifications. The test for a spatial error process that is robust to local

presence of a spatial lag is given as:

RLM-SEM =
1

T − T 2(NJλ,β)−1

(
û

′
Wû

σ̂2
− T (NJλ,β)−1

û
′
Wy

σ̂2

)2

∼
H0

χ2
1 , (3.19)

where the subtraction of a correction factor that accounts for the local misspecification

(potentially omitted spatial lag process) is clearly visible. In (3.19), we test the H0

of no spatial dependency in residuals (OLS-estimated) against the alternative of SEM

specification, while controlling for possible local spatial lag (SLM process).
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Similarly, a test for a spatial lag process robust to local presence of spatial error auto-

correlation is defined as:

RLM-SLM =
1

N Jλ,β − T

(
û

′
Wy

σ̂2
− û

′
Wû

σ̂2

)2

∼
H0

χ2
1 . (3.20)

Under null hypotheses of non-spatial processes, both RLM-SEM and RLM-SLM asymp-

totically follow a χ2
1 distribution. The above tests (3.17) – (3.20) are implemented in

R – see [18] for technical details and additional references. Heteroskedasticity-robust

versions of statistics (3.17) and (3.18) are available [36]. However, heteroskedasticity-

robust versions of the (3.19) and (3.20) tests are not easily accessible as accounting for

heteroskedasticity leads to highly non-linear expressions [3].

Marginal effects in spatial models

In spatial models (GNS), there are two basic types of marginal effects: direct and indi-

rect effects. In presence of spatial autocorrelation among observed variables, if a given

explanatory variable in some i-th unit changes, than not only the dependent variable in

the i-th unit is expected to change (direct effect) but also the dependent variables in

other units (neighbors of unit i) would change. Such effect across spatial units is the

indirect effect, sometimes called “spillover”. This topic can be conveniently illustrated

using a slightly modified GNS model (3.2):

y = (IN − λW )−1(Xβ +WXθ) + r , (3.21)

where r contains both the intercept and error term of (3.2) specification. Marginal

effects for some arbitrary regressor xk from (3.21) are given by a Jacobian matrix of

first derivatives of the expected values of y with respect to the explanatory variable:

∂E(y)

∂E(xk)
=

(
∂E(y)

∂x1k
· · · ∂E(y)

∂xNk

)
=


∂E(y1)

∂x1k
· · · ∂E(y1)

∂xNk
...

. . .
...

∂E(yN )

∂x1k
· · · ∂E(yN )

∂xNk

 . (3.22)

After some calculation and re-arranging [28], this can be expressed as:

∂E(y)

∂E(xk)
= (IN − λW )−1(INβk +W θk) . (3.23)
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For convenience and clarity, RHS of (3.23) may also be re-written as:

∂E(y)

∂E(xk)
= (IN − λW )−1


βk w12θk · · · w1Nθk

w21θk βk · · · w2Nθk
...

...
. . .

...

wN1θk wN2θk · · · βk

 . (3.24)

Recall that wij denotes the (i, j)-th element of the W matrix and wij > 0 if two spatial

units si and sj are neighbors (and zero otherwise). βk and θk are parameters of model

(3.21), corresponding to the k-th regressor. The RHS of (3.24) is a N×N matrix. From

the RHS of (3.24), we may see several properties of marginal effects in spatial models:

• Each diagonal element of the partial derivatives matrix (3.24) represents a direct

effect and every off-diagonal element represents an indirect effect.

• Direct effects and indirect effects differ across spatial units. Each element of the

RHS matrix in (3.24) might be different. Individual direct effects differ because the

diagonal elements of (IN−λW )−1 are different for each unit (given λ 6= 0). Indirect

effects are different because off-diagonal element of both W and (IN −λW )−1 are

different if λ 6= 0 and/or θk 6= 0.

• In absence of spatial autocorrelation of y and xk, i.e. if both λ = 0 and θk = 0,

then all off-diagonal elements equal zero. In this case (non-spatial model), indirect

effects are not present. Also, direct effects are constant (equal to βk) across all

spatial units as (IN − λW )−1 simplifies to IN if λ = 0.

• The indirect effects that occur if θk 6= 0 and λ = 0 are referred to as local effects.

The name arises from the fact that such effect only arise from the neighborhood

of a given unit. For example, from (3.24) we can see that the effect of xjk (k-th

regressor for the j-th unit) on yi is nonzero only if units si and sj are neighbors

(i.e. wij > 0). For non-neighboring units, xjk has no effect on yi.

• The indirect effects that occur if λ 6= 0 and θk = 0 are referred to as global

effects. The name comes from the fact that effects on yi originate from units that

lie within the neighborhood of si as well as from units outside this neighborhood.

Mathematically, this is due to the fact that matrix (IN −λW )−1 does not contain

zero elements (given λ 6= 0) – even though W does contain (usually many) zero

elements.
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• For λ 6= 0 and θk 6= 0, both local and global indirect effect are present and they

cannot be separated from each other.

• The presence or absence of spatial autocorrelation ρ in the error term of equation

(3.21) has no impact on the marginal effects (3.24): as we take the first derivative

of E(y) with respect to xk, the r = (αι + ρWu + ε) element disappears because

it is a “constant”.

An alternative approach to describing (the same underlying) direct and indirect effects

in cross-sectional models is formalized by equations (4.10) – (4.13) where it serves for

derivation of marginal effects in spatial panel data models as in [67].

Considering the complexity of marginal effects (3.24) for one regressor, the problem of

presenting estimation output from a spatial econometric model with multiple regressors

may be severe: even if reliable estimates λ̂, β̂ and θ̂ are available, we have to deal with

a N×N matrix of marginal (direct and indirect) effects for each regressor.

Therefore, estimated marginal effects are usually presented in an aggregated form. For

each regressor, we usually report two (sometimes three) statistics: First, a summary

indicator for direct effects is calculated as the average of all diagonal elements in (3.24).

Second, indirect effects are reported as the average of all off-diagonal elements. The

above statistics are usually reported along with their corresponding standard errors and

statistical significance indicators (p-values) – see [28] or [67] for technical discussion.

In addition, total effects are sometimes reported. Total effect (total impact) is just a

sum of the direct and indirect impacts. Total standard errors, z scores and statistical

significance levels are also calculated by aggregating the underlying direct impacts and

spillovers [28]. The main reason for reporting total impacts can be summarized as

follows: in many empirical applications, the direct and indirect effects may come with

opposite signs. Therefore, at some higher level of spatial aggregation, direct impacts and

spillovers could cancel out. For example, positive direct effects may come at the “price”

of equally prominent negative spillovers. Therefore, total impacts are often reported

along with their direct/indirect constituents – even if there are no contradicting signs of

direct/indirect impacts.

There is a particular drawback to the above discussed marginal effects for SLM: the

ratio between direct and indirect effect for a regressor xk is independent of βk. This is

because the βk coefficients cancel out in the numerator and denominator of such ratio

(direct/indirect effects). This ratio depends only on the parameter λ and on the W
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matrix specification. Hence, it is the same for all regressors in a given spatial model.

Unfortunately, this “behavior” (say, identical relative strengths of direct and indirect

effects for all regressors) seems rather implausible in many types of empirical applications

[28].

3.2. Robustness of spatial models with respect to

neighborhood definition

Another major weakness of the spatial models described above is the fact that W matri-

ces cannot be estimated along with model parameters. Rather, W needs to be specified

prior to model estimation. There is little theoretical background for choosing the “right”

W matrix specification. The variety of available neighborhood definitions and stan-

dardization methods implies that researchers usually evaluate several alternative spatial

structure settings in order to verify model stability and robustness of the results.

On the other hand, not all researches consider the ambiguity in W specification as a

problem. LeSage and Pace [68] argue that SDMs and other spatial specifications allow

for accurate estimation of the spatial effects, even if both the spatial matrix W and

the spatial regression model are misspecified. They argue that for a given model – esti-

mated using two similar (highly correlated) weights matrices W (a) and W (b) – it would

be unlikely to reach materially different coefficient estimates and partial derivatives as

in (3.24). Their argument is supported by an empirical (micro-level) housing-prices ex-

ample based on data from [55] (506 spatial units) and for three alternative W matrices

generated using the kNN approach for k = 5, 6 and 7. Unfortunately, the conclusions

presented in [68] would only hold for a relatively narrow class of spatial models and W

settings. The presumed robustness does not easily extend from a kNN-based spatial

structure to other types of structures, such as distance-based W matrices.

A theoretically simple yet computationally expensive approach to evaluating robustness

of estimated models (regression parameters, direct and indirect effects and their confi-

dence intervals) against changes in the pre-specified W matrices may be summarized as

follows:

1. Start with a relatively sparse W distance matrix, that is generated by using a

restrictive (i.e. low) maximum distance threshold for neighbor definition. Note

that the threshold must be high enough to ensure at least one neighbor for each

spatial unit in the sample. The existence of islands (units with zero neighbors)

breaks down the ML estimation of spatial models. Using such sparse W matrix,
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estimate your model and record all relevant estimates along with their confidence

intervals and other model-related statistics (AIC, BIC, etc.)

2. Increase the maximum distance threshold by some relatively low amount (say,

10-km iterations can be used for modeling behavior in NUTS2 units). Estimate

the model and record all relevant information. Note that unlike in the kNN case,

threshold changes may lead to significantly uneven changes in neighbor sets and

thus in the corresponding W matrices.

3. Repeat step 2 until a maximum neighborhood threshold distance (defined with

respect to the spatial domain – “map” – used) is reached. Usually, this would

happen in one of the following manners: (a) “range” (as in the semivariogram figure

1.2) is reached – there is no point of increasing the maximum neighbor distance

threshold beyond a distance where data are no longer spatially autocorrelated.

(b) Maximum neighbor distance threshold becomes so large that the assumption

of spatial weak dependency (discussed in section 1.2) no longer applies. As a

rule-of-thumb indicator, we often see that the SpatialLag(yi) as in (2.6) becomes

nearly constant across spatial units and var(wiy) falls quickly beyond some ad-hoc

(dataset-specific) distance threshold. (c) We have some theoretically/empirically

based prior information limiting the plausible range of spatial interactions (i.e.

maximum distance threshold).

4. Plot the estimated spatial parameters, direct and indirect effects of interest, etc.

against the distance thresholds used. From such plots, stability of estimates and

corresponding significance intervals can be studied. Also, the information criteria

(or maximized log-likelihoods) obtained for models estimated using different W

matrices may suggest (“identify”) the best distance threshold (most supported by

the data) to be used for subsequent model interpretation. See figures 6.2, 7.2 and

8.3 for empirical examples of this approach.

3.3. Spatial filtering and semi-parametric models

Parametric framework and models as discussed in section 3.1 are appropriate in multiple

empirically relevant scenarios and applications. However, parametric methods are poten-

tially not robust in a situation where the model suffers from a simultaneous presence of

different sources of misspecification. Factors such as unaccounted nonlinear relationship

among spatially correlated variables, spatially varying relationships (non-stationarity),

uncontrolled common factors (spatial and time-related) and other instances of spatial
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heterogeneity can disrupt spatial (cross-sectional) dependencies or even manifest them-

selves as such.

In such circumstances, spatial filtering methods may be used to remove global and/or

local spatial dependencies among geo-coded variables. Unlike ML estimators, spatial

filtering does not rely on distributional assumptions and it is fairly robust to model

misspecification. Nonparametric filtering can be used to eliminate spatial autocorrelation

from observed yi values by “spatial demeaning” through local autocorrelation measures.

In case we need to preserve some level of spatial properties within the model, spatial

filtering can be implemented as a semi-parametric method [82]. For this approach,

spatial information can be extracted from the underlying spatial structure through the

Moran eigenvector approach [17].

Univariate nonparametric spatial filtering by Getis

Getis’ nonparametric filtering method can only be applied to non-negative and positively

autocorrelated spatial observations. It is based on the Local G statisticGi(τ) from (2.15).

Pioneered by Getis [45], the ratio of Gi(τ) and its expected value E [Gi(τ)] from (2.16)

can be used for multiplicative transformation of a spatial variable yi as follows:

ÿi =
E [Gi(τ)]

Gi(τ)
· yi , (3.25)

where ÿi is the spatially filtered value of yi. The transformation outlined in (3.25)

corrects for positive spatial autocorrelation in observed data by counterbalancing the

clustering of below-average and above-average observations. Specifically, the filtering

factor in (3.25) shrinks yi if the majority of observations yj within the τ distance of

unit i are above average. Similarly, yi is inflated if neighboring observations feature

below-average values.

While this approach is computationally simple and intuitive, its underlying positive

support assumption for yi can be a strong limitation. Also, the process of setting τ

(maximum neighbor distance threshold) is rather arbitrary. However, the critical dis-

tance for statistically significant spatial interactions may be based on observed data –

by fitting empirical semivariograms (1.11). Formula (3.25) is univariate. Therefore, if

we aim to estimate regression models such as (3.1) using spatially filtered data:

ÿ = αι+ Ẍβ + ε , (3.26)
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then spatial filtering (3.25) has to be applied individually to each observed variable

in the model – hence, positive support assumptions apply to all variables used in the

regression. For additional discussion and an empirical application of Getis’ univariate

filtering to the analysis of EU’s regional unemployment dynamics, see Chapter 6 or [38].

Moran’s eigenvector maps

Moran’s eigenvector maps (MEM) belong to a wider class of spatial-filtering methods

that seek to avoid the inconveniences involved in estimation and interpretation of spatial

autoregressive parameters of SLM (3.3) and SDM (3.6) models [51, 82].

When spatial-filtering is used in the context of spatial econometric modeling, we work

with two distinct types of regressors that are used in the regression model: we have a set

of geo-coded variables (macroeconomic indicators) with a common underlying spatial

structure and a spatial-filter element (e.g. a MEM), describing spatial dependency pat-

terns. The eigenvector-based filtering as described in [51] can be summarized as follows:

We start by determining pairwise geographic (Euclidean) distances hij among all spatial

units into a symmetric N×N matrix of distances. Next, W is constructed along the

following rules for its individual wij elements:

W = [wij ] =


0 if i = j ,

0 if hij > τ ,

[1− (hij/4τ)2] if hij ≤ τ ,

(3.27)

where τ is a conveniently chosen threshold value that keeps spatial units connected –

e.g. through a minimum spanning tree algorithm [51] on a graph corresponding to the

H matrix of distances. This approach leads to a symmetric W matrix with uniformly

bounded row and column sums (see section 2.2 or [28] for details). In literature ([25],

[51], etc.), the W matrix from (3.27) is also called “truncated connectivity matrix”

because not all spatial units are connected. For the same reason (not all units being

connected), W connectivity matrices (3.27) have a non-Euclidean nature – unlike the

distance matrices [hij ]. The description provided above uses spatial distances to define

neighbors, yet contiguity and kNN-based approaches are applicable as well.

Now, we use W from (3.27) to construct a double-centered connectivity matrix Ω as
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Ω = (IN −
1

N
ιNι

′
N )W (IN −

1

N
ιNι

′
N ) , (3.28)

where IN is the identity matrix (N×N) and ιN is a column vector of ones, with length

N (the number of spatial units considered). Row and column sums of Ω equal zero

by construction. See [51] for technical discussion of centered connectivity matrices and

their applications in ecology, etc.

Next, we obtain “Moran’s eigenvectors” v and eigenvalues κ for Ω from equation

Ωv = κv . (3.29)

By solving the characteristic equation system (Ω − κIN )v = 0 for κ, we obtain all so-

lutions κi, satisfying the condition |Ω − κIN | = 0 . Because the centered connectivity

matrix Ω is real and symmetric, its eigenvectors (a subset of unique eigenvectors of

the rank-deficient matrix Ω) are orthogonal and linearly independent. Given the non-

Euclidean nature of the underlying connectivity matrix W in (3.27), both positive and

negative eigenvalues are produced by solving (3.29). Eigenvectors corresponding to pos-

itive κ represent positive spatial association and negative eigenvalues represent negative

spatial dependency processes.

For a well-defined spatial domain that provides adequate coverage of a given geographic

area1 and given positive spatial autocorrelation in data, eigenvectors v bear the following

interpretation: MEMs (spaces spanned by single or multiple v eigenvectors) with associ-

ated large (positive) eigenvalues κi represent global-scale spatial trends (say, landscape-

wide core/periphery dynamics in observed EU data). Eigenvectors with medium eigen-

values represent medium scale dynamics (e.g. “regional”, say NUTS1 and NUTS2 in-

teraction patterns) and eigenvectors with small (positive) eigenvalues would represent

small scale dependencies (“local” patchiness, e.g. at the NUTS3 or LAU levels).

MEM, which is a conveniently chosen subset of eigenvectors v, can be used as a synthetic

explanatory variable in semiparametric regression models. First, the selected eigenvec-

tors are combined to constitute a spatial autocorrelation function. This semi-parametric

part of the model (the spatial function furnishing the latent spatial autocorrelation in

geo-coded variables) is then additively combined with an appropriate set of explanatory

1This necessarily non-rigorous statement reflects a general assumption that irregularly spaced patterns
(e.g. NUTS2 regions and their centroids) can appropriately reflect geographical variability in the
observed data. Regularly spaced (chessboard-like) patterns are not always required and/or appro-
priate. While both approaches have their empirical advantages and disadvantages, irregular design
(adaptive sampling) is not fundamentally “worse”.
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variables in the regression model. Following the general MEM selection methodology

described in [17] and [82], a relatively simple semiparametric spatial model based on

MEMs is derived next.

MEM-based semiparametric spatial regression models

To accommodate the paradigm used by Tiefelsdorf and Griffith [82], we re-cast the

SDM (3.6) specification

y = λW y + αι+Xβ +WXθ + ε

using a common spatial autocorrelation coefficient δ = λ and assuming θ = −δβ:

y = δW y + (IN − δW )Xβ + ε , (3.30)

where the intercept term αι is absorbed into X matrix, ε ∼ N(0, σ2I) and the common

factor constraint assumption θ = −δβ for the term (Xβ + WXθ) follows e.g. from

[3]. In model (3.30), the spatial structure (spatial weights matrix) W is used gener-

ically: we can embrace symmetric matrices such as (3.27) or their row-standardized

(non-symmetric) transformations, as well as other approaches to W specification.

The semiparametric model is established using a misspecification paradigm, where we

assume an elementary regression model with spatially autocorrelated disturbances

y = Xβ + ε∗ ,

ε∗ = Eγ + ε ,
(3.31)

where ε∗ are the spatially autocorrelated disturbances that may be decomposed into ε

(white noise) and E: a set of missing (unobservable, unspecified) exogenous variables

that follow a common spatial dependency pattern given by W and γ is a vector of

parameters.

It is important to note that the misspecification approach to spatial modeling – con-

centrated in the Eγ term – is not directly comparable with the preceding specification

(3.30) nor with the seemingly conformable SEM (3.8) specification that is based on spa-

tial dependency among random elements. Using the semiparametric approach described

next, the misspecification term Eγ is approximated by a set of spatial proxy variables

– conveniently chosen MEMs.
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We start by rewriting the spatial model (3.30) as

y − δW y = Xβ − δWXβ + ε . (3.32)

Solving the LHS of (3.32) for y, we get

y = (IN − δW )−1[Xβ − δWXβ + ε] . (3.33)

Using the equivalent expansion (IN − δW )−1 =
∑∞

k=0 δ
kW k , we can cast (3.33) as

y =

∞∑
k=0

δkW k[Xβ − δWXβ + ε] ,

=

∞∑
k=0

δkW k(Xβ)−
∞∑
k=0

δk+1W k+1(Xβ) +

∞∑
k=0

δkW kε ,

(3.34)

Because δ0W 0 = IN and
∑∞

k=0 δ
k+1W k+1 =

∑∞
k=1 δ

kW k, we can simplify (3.34) into

y = Xβ +

[ ∞∑
k=1

δkW kε

]
+ ε , (3.35)

which incorporates white noise ε and the spatial misspecification term, thus following

the structure of ε∗ in model (3.31). Importantly,
∑∞

k=1 δ
kW kε is not correlated to the

regressors X (by OLS assumption of X and ε independence). Therefore, the OLS-

estimated parameters β̂ of a modified model (3.31)

y = Xβ + ε∗ ,

ε∗ =

∞∑
k=1

δkW kε+ ε
(3.36)

are unbiased estimators for the population parameters β. On the other hand, the esti-

mated standard errors s.e.(β̂) will be biased [82].

In empirical applications, the misspecification “problem” as in equation (3.31) is difficult

to deal with because the exogenous term Eγ is unknown/unspecified/missing. However,

taking advantage of the specification (3.36), we can design spatial proxy variables that

satisfy model assumptions: We start by extracting eigenvectors {v1, . . . ,vN} from the
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quadratic form in

{v1, . . . ,vN} ≡ evec

[
MX

1

2
(W +W ′)MX

]
, (3.37)

where MX = [IN−X(X ′X)−1X ′] is a projection matrix and the extracted eigenvectors

are orthogonal to X. The RHS part of expression (3.37) is designed to induce symmetry

to generic (non-symmetric) neighborhood specifications. For symmetric W matrices, it

holds that W = 1
2(W +W ′) and thus (3.37) may be simplified accordingly. Please note

that the RHS term in square brackets is a generalization of the centered connectivity

matrix introduced in (3.28).

Given the properties of the quadratic form in (3.37), eigenvectors are mutually orthogo-

nal and form a basis for a spatial proxy variable in a semiparametric spatial model. Now,

if we follow [82] and associate the term E from (3.31) with a convenient parsimonious

subset of eigenvectors {v1, . . . ,vN}, we can approximate the misspecification term in

(3.30) and its (3.35) form as

Eγ ≈
∞∑
k=1

δkW kε , (3.38)

where orthogonality toX is maintained so that OLS-based estimates β̂ remain unbiased.

Once the approximate substitution (3.38) is performed in model (3.35), the resulting

specification may be estimated using the formula

y = Xβ +Eγ + ε , (3.39)

where y is decomposed into a systematic component (featuring X), stochastic spa-

tial component and white-noise residuals. For conveniently specified E, the estimated

stochastic spatial term Eγ̂ removes a significant portion of the mean squared error

(MSE) term attributable to spatial autocorrelation (i.e. Eγ̂ is often referred to as spa-

tial filter). Overall, Tiefelsdorf and Griffith [82] conclude that this filtering approach is

fairly robust to model specification errors when compared with fully parametric models

and ML-based estimators. Also, they provide semiparametric approach to estimation of

SLM-like models, where spatial autocorrelation affects the dependent variable only.

Choosing a convenient and parsimonious subset of eigenvectors for the E term is crucial

for a successful application of the MEM-based semiparametric algorithm. First of all,

we aim to choose such E so that the residuals ε̂ from model (3.39) become spatially

random (independent with respect to the underlying spatial domain). Also, we aim to
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find a parsimonious, (i.e. smallest possible) subset of eigenvectors leading to spatial

independence of ε̂.

To establish the subset of eigenvectors E with desired properties, stepwise regression

approach is often suggested [50], [82]. Although different search (stepwise) algorithms

are available, most of them are based on a modified Moran’s I (2.7) coefficient, often

denoted [25] as MC and formalized by

MCvi =
N

ι′N Z ιN
v′iW vi , (3.40)

where Z is a distance-based similarity matrix with zij = 1 − (
hij

max(hij)
)2. Individual zij

values vary between zero for hij = max(hij) and 1 for hij = 0. Given the real-valued

and symmetric nature of spatial matrices, Moran’s MC for each eigenvector vi is equal

to its associated eigenvalue κi if W is scaled to satisfy [ι′N (W + W ′
N )ιN ]/2 = N (see

[82] for discussion on the Rayleigh quotient and for computational implications).

A forward stepwise selection method by Griffith’s [50] may be described as follows: The

first eigenvector v1 is chosen based on maximizing MCvi in expression (3.40). Using such

v1 as a starting eigenvector subset for E, equation (3.39) is estimated and corresponding

residuals ε̂ are evaluated with respect to their spatial autocorrelation (e.g. using Moran’s

I). If residuals are spatially dependent, new eigenvector, v2 is added to E using the

same MC-maximization criterion and spatial autocorrelation in residuals is tested again.

Eigenvectors are iteratively added to E, until the spatial autocorrelation in residuals ε̂

falls below a predetermined threshold (say, until we fail to reject the H0 of no spatial

autocorrelation at the 5 % significance level).

Please note that all eigenvectors (3.37) inE are mutually orthogonal by design, which has

important implications to our semiparametric model: Estimated γ̂i parameters already

included in model (3.39) would remain unaffected after adding new eigenvector(s) to E.

Eigenvectors in E follow a strictly decreasing sequence, where each eigenvector explains

a specific proportion of variance in residuals of the model (3.39) – the largest proportion

of variance is explained by the first eigenvector selected into E, the second largest

amount of variance is explained by the second eigenvector, etc. These two implications

combined together also lead to identical E obtained through forward and backward

stepwise selections.

Computational efficiency of the above stepwise selection procedure may be significantly

increased using some of the following approaches. For example, we can restrict the set of
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eigenvectors entering our stepwise evaluation based on the sign of spatial autocorrelation

in observed data (usually positive for geo-coded economic variables). This approach

reduces the number of MCvi calculated and it is primarily relevant for large spatial

domains, i.e. for large N values). Tiefelsdorf and Griffith [82] provide a very effective

search algorithm that is also implemented in R (spdep package, [17]).

The above discussed search methods for eigenvector components of E focus on mini-

mizing spatial autocorrelation in ε̂. However, this is not the only possible paradigm

and other approaches are discussed in literature as well as used empirically (see [51]

or [66]). For example, we can disregard spatial autocorrelation in residuals of model

(3.39) and use stepwise (or exhaustive / brute force) approach for selection of individual

eigenvectors in E to minimize the total variance in residuals of the model (3.39).
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models

4.1. Static spatial panel models

As the geo-coded observations of variables are often repeated in time, spatial panel

models can be used to depict interactions among variables across spatial units as well

as over time [10, 71]. This section provides a brief spatial panel model taxonomy with

corresponding estimation and testing methods. The general form of a static panel model

that includes both the spatial effects (spatial lag) for the dependent variable and the

spatially autocorrelated error terms may be outlined as

y = λ (IT ⊗W )y +Xβ + u ,

u = (ιT ⊗ IN )µ+ ε ,

ε = ρ (IT ⊗W ) ε+ υ ,

(4.1)

where y is a NT×1 column vector of dependent variable observations (i = 1, 2, . . . , N

denotes cross-sectional units and t = 1, 2, . . . , T relates to the time dimension and i is

the “fast” index here). The spatial weights matrix W follows from section 2.2 and X is

a (NT×k) full column rank matrix of k exogenous regressors. Elements IT and IN are

identity matrices (with dimensions given by their subscripts) and ιT is a (T×1) vector of

ones. For panel data models, regression equations and corresponding expressions often

involve the ⊗ Kronecker product operator. Elements of vector β as well as λ and ρ are

parameters of the model. The disturbance vector u (NT×1) is a sum of two terms: the

unobserved individual effects µ and spatially autocorrelated innovations ε. The (N×1)

vector µ holds time-invariant and spatially uncorrelated individual effects. Innovations

ε are spatially autocorrelated with a spatial error autoregressive parameter ρ where

|ρ| < 1. Finally, υ′ = (υ′1, . . . ,υ
′
T ) is a vector of spatially independent innovations:

υit ∼ IID
(
0, σ2υ

)
.
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Following the standard approach to panel data analysis (as in [10], [49] and [84]), in-

dividual effects µi are treated as either fixed or random. With the “random effects”

(RE) model, we assume that unobserved individual effects µ are not correlated to other

regressors of the model. For “fixed effects” (FE) models, we relax this assumption: some

level of correlation between individual effects and other regressors is acceptable. In the

following sections, basic familiarity with non-spatial RE and FE models [49] is assumed.

Extending tests from spatial cross-sections to panel data

Ou et al. [76] discuss the application and power of Moran’s I test in panel models. For

spatial panel models, Moran’s I may be cast as

I =
e′We

e′e
, (4.2)

where the OLS-based residual vector e is given as e = [INT −X(X ′X)−1X ′ ]y = My.

INT is an (NT×NT ) identity matrix and M is a real symmetric matrix, the “residual

maker”. W = (IT ⊗W ) is a block-diagonal matrix (NT×NT ) with T blocks of spatial

weights matrices W (row-standardized). As derived in [81], Moran’s I from equation

(4.2) asymptotically (fixed T , N → ∞) follows normal distribution and its mean and

variance are

E(I) =
tr(MW)

NT − k
, (4.3)

and

var(I) =
tr(MWMW ′) + tr

(
(MW)2

)
+ (tr(MW))2

(NT − k)(NT − k + 2)
− [E(I)]2 , (4.4)

where tr(·) is trace of a matrix. Finally, expressions (4.2), (4.3) and (4.4) are combined

into a z-score statistic that can be used (asymptotically) for testing the null hypothesis

of spatial randomness in e, as follows:

zI =
I − E(I)√

var(I)
∼
H0

N(0, 1) . (4.5)

Please note that e can be either residuals from regressing y on X or – alternatively

– zI can be used in a univariate mode: for X = ι, we test for spatial dependency in

deviations of y from its mean value.

Interestingly, the above described Moran’s I test for panel data may be applied even if the

spatial weights matrix is time-varying – i.e. if spatial interactions are allowed to change

over time (please do not confuse this concept with “dynamic” models containing lagged
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exogenous and/or endogenous regressors as in section 5.1). For this generalization, W
is simply re-cast as

W = {wij,t} =



W1 0 . . . 0 0

0 W2 . . . 0 0

...
...

. . .
...

...

0 0 . . . WT−1 0

0 0 . . . 0 WT


,

where Wt denotes spatial weights matrix (N×N) for period t. However, Ou et al. [76]

point out that with increased time-variability of spatial interactions, test results become

very sensitive to Wt misspecification.

Specialized Lagrange multiplier tests for spatial dependency identification can be used

to simplify the all-encompassing general spatial panel model specification (4.1) and to

identify proper model specification. Anselin et al. [7] provide extensions to the (3.17) –

(3.20) cross-sectional LM-tests used to choose between SLM and SEM-type dynamics.

Also, similar LM-based specification tests for identification of spatial dependency types

are available in [71].

When testing for spatial randomness of choosing among different spatial dependency

patterns, we need to keep in mind the inherent ambiguities emanating from W con-

struction, where contiguity, kNN (with different k) or maximum distance thresholds

(with varying τ) may be applied. Robustness of the test (model specification choice)

should always be assessed with respect to varying spatial patterns (W matrix).

4.2. Random effects (RE) model

This section deals with random effect specification of individual effects µ: when in-

dividual effects can be viewed as random and independent of regressors, the random

effect (RE) model and RE estimator can provide relative efficiency to estimation [71,

85]. RE model can be used even under a generalizing assumption of permanent (i.e.

time-invariant) spatial spillovers in individual effects – for detailed discussion of vari-

ous RE spatial panel model specifications, please refer to [64] and to literature sources

referenced therein.

Random effect properties of µ are implicitly included in the following assumption con-

cerning unobservable individual effects: µi ∼ IID
(
0, σ2µ

)
. Also, the spatially autocorre-
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lated error term ε from (4.1) can be equivalently expressed (see Appendix A.3) as:

ε =
(
IT ⊗B−1N

)
υ where BN = (IN − ρW ) ,

where BN is assumed non-singular. Now, under RE assumptions and substituting for ε,

the general spatial panel specification (4.1) can be re-written as a RE spatial model:

y = λ (IT ⊗W )y +Xβ + u ,

u = (ιT ⊗ IN )µ+
(
IT ⊗B−1N

)
υ

(4.6)

and its error variance (see [71]) may be outlined as

var (u) = Ωu = σ2µ
(
ιT ι
′
T ⊗ IN

)
+ σ2υ

[
IT ⊗

(
B′NBN

)−1]
. (4.7)

ML and GMM-based estimation method for RE spatial lag models (featuring spatial lag

in the dependent variable y but not in the error term ε) and RE spatial error models

(where only ε is spatially autocorrelated) are available e.g. in [28, 64] and from numerous

other sources. In this section, estimation of a full specification (both y and ε spatially

lagged) is briefly outlined, based on the approach in [71].

We start by scaling down the error-term variance matrix Ωu by the idiosyncratic error

variance into

Σ = φ
(
ιT ι
′
T ⊗ IN

)
+ IT ⊗

(
B′NBN

)−1
,

where φ = σ2µ/σ
2
ε . From [3, 71], the log-likelihood function for our RE model (4.6) is

given as follows:

LL(β, σ2υ, φ, λ, ρ) =− NT
2 2π − NT

2 log σ2υ + T log |AN |

− 1
2 log

∣∣∣TφIN +
(
B′NBN

)−1∣∣∣
+ (T − 1) log |BN | −

1

2σ2υ
u′Σ−1u ,

(4.8)

where |AN | is the determinant of AN = (IN − λW ) and |BN | = det(BN ). An iterative

estimation procedure for parameters of (4.6) may be outlined as follows: We start with

some initial values for λ, ρ and φ and estimate β and σ2υ using the first order conditions

β = (X ′Σ−1X)−1X ′Σ−1ANy ,

σ2υ = (ANy −Xβ)′Σ−1(ANy −Xβ)/NT .
(4.9)
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Output from the GLS-based estimation in (4.9) is used for concentrating the log-likelihood

function (4.8) and its maximization with respect to λ, ρ and φ. The estimated λ, ρ and

φ parameters are then used to update matrices Σ and AN for the GLS estimation of

(4.9). This estimation – alternating between GLS estimation of (4.9) and ML estima-

tion of the concentrated (4.8) – is performed repeatedly, until convergence criteria are

satisfied. R-implementation of this estimation process along with alternative estimation

algorithms are available e.g. from [71].

Interpretation of the estimated RE model – marginal effects

Besides spatial panel RE model estimation and testing, specific interpretation issues

need to be addressed for models featuring spatial lag in the dependent variable. For the

same reasons as in cross-sectional models, the estimated β parameters of model (4.1)

do not form a proper basis for description of model dynamics. For such purpose, we

use the partial derivative approach to interpretation of the impacts from changes to the

regressors. Direct and indirect effects need to be considered: as we simulate a change in

xit,r – the r-th explanatory variable for spatial unit i at time t – we expect the dependent

variable in the i-th unit to change (direct effect) and also, for λ 6= 0, we expect some

non-zero effects on the dependent variables in neighboring units (indirect effects). Please

note that spatial autocorrelation in the error term plays no role here – see discussion

below expression (3.24).

Even with static spatial panel models, this type of dynamics is relatively complex to

describe – although in principle it is similar to the cross-sectional case described in

section 3.1. We can use a slightly modified notation from LeSage and Pace [67] to

provide a simple overview, starting with the reduced form of a cross-sectional spatial

model (we follow the explicit inclusion of intercept as in [67]):

(IN − λW )y = Xβ + αιN + u , (4.10)

where y and u are (N×1), X is (N×k) and α is the intercept. Equation (4.10) can be

conveniently rewritten for subsequent interpretation as

y =

k∑
r=1

Sr(W )xr +A−1N ιNα+A−1N u , (4.11)

60



4. Spatio-temporal data and econometric models

where
Sr(W ) = A−1N INβr = (IN − λW )−1 INβr ,

A−1N = (IN − λW )−1 = IN + λW + λ2W 2 + λ3W 3 + · · · .
(4.12)

The direct effects (direct impacts) and spillover effects (indirect effects) for a cross-

sectional spatial model (4.11) are given by

∂yi
∂xir

= Sr(W )ii (direct effect: si → si)

∂yi
∂xjr

= Sr(W )ij (spillover: sj → si)
(4.13)

where Sr(W )ij is a scalar term, element of the matrix Sr(W ). Now, we may conclude

our derivation of impacts for the spatial panel model (4.1): for spatial panel models,

Sr(W ) may be generalized to

Sr(W) = (INT − λW)−1 INTβr , (4.14)

where INT and W follow from equation (4.2), i.e. W = (IT ⊗W ). To express the

impacts from an estimated spatial panel model, we only need to substitute Sr(W) for

Sr(W ) in expression (4.13). For additional discussion of impacts’ variance and statistical

significance tests, see [67].

Mundlak-Chamberlain approach to RE models

As already stated, we assume that the (time-invariant and spatially independent) unob-

served individual effects µ are not correlated with other regressors X of the spatial RE

model. Although this is a very strong assumption – arguably unrealistic in most empir-

ical applications – one can simply adopt the Mundlak-Chamberlain method of dealing

with correlated random effects (CRE) – see [84] for basic (non-spatial) reference.

The Mundlak-Chamberlain CRE method allows us to relax the assumption of indepen-

dence among µ and X while keeping the “random” nature of µ: since individual effects

µ are time invariant, we can reasonably assume that they would be correlated with the

time-invariant part of X – such as their individual means:

x̄i,k =
1

T

T∑
t=1

xit,k .

Here, for each spatial unit i, we calculate average values of a given regressor k across all
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corresponding time observations (this is done for all time-varying regressors in X).

Based on the above CRE assumptions, the individual-specific effect µ can be split up

into two parts: one that is related to the time-averages of the explanatory variables and

a second one that is unrelated to the explanatory variables. This may be done through

the following equation:

µ = (IN ⊗ ιT )′ X̄πµ + rµ , (4.15)

where µ comes from the RE model (4.6), X̄ contains the individual-specific averages

of all regressors from equation (4.6) and its first column is ιNT as it relates to the

intercept of the “auxiliary regression” (4.15). πµ is a vector of coefficients relating the

individual means of X to µ. Finally, rµ are the residuals – i.e. the “remaining part”

of µ that is uncorrelated to explanatory variables. Basically, the Mundlak-Chamberlain

CRE method consist in substituting the RHS of (4.15) for µ into (4.6) and estimating

the resulting expanded specification using the RE approach: we can safely use the RE

estimator as the random effects rµ are uncorrelated to other X-matrix regressors – once

the averages of time-varying regressors are incorporated into the model. In [72], Miranda

et al. derive a very general Mundlak-Chamberlain CRE model that even allows for spatial

dependency in the individual effects µ (identification, estimation and interpretation of

such model is discussed therein).

4.3. Fixed effects (FE) model

Compared to RE models, FE assumptions are less restrictive, allowing for correlation

between the (unobserved) individual effects and other regressors. At the same time, we

cannot use time-invariant regressors in spatial FE models (also applies to non-spatial

FE models, see [85]) as those would be eliminated from the model during the FE-

based estimation process where individual averages of variables are subtracted from all

regressors (and from the dependent variable as well).

Following the approach of [29] and [71] as well as drawing from model taxonomy intro-

duced in chapter 3, this chapter focuses on two types distinct models: FE spatial lag

(spatial dependency in y only) and FE spatial error (only the error-term is spatially

dependent) models. Discussion relating to empirically less common spatial FE model

specifications that combine both types of dependencies is available from [64].
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Fixed effects spatial lag model

For the FE spatial lag models that do not feature spatial autocorrelation in the error

term, we can simplify and stack the general spatial panel model (4.1) into

y = λ (IT ⊗W )y + (ιT ⊗ IN )µ+Xβ + υ , (4.16)

which is the FE spatial lag model. Although all elements of (4.16) have been intro-

duced already, we shall repeat that υ is a vector of spatially independent and normally

distributed innovations that vary both over cross-sectional units and across time.

As already mentioned, the first step in FE spatial lag model estimation consists of

eliminating the individual effects (along with any other time-invariant regressors) from

the model. The elimination is performed by means of time-demeaning (subtracting

corresponding individual means from observed values). The transformed equation (4.16)

can be written as follows:

ÿ = λ (IT ⊗W ) ÿ + Ẍβ + ϋ , (4.17)

where ÿ =
[(
IT − 1

T [ιT ι
′
T ]
)
⊗ IN

]
y, i.e. it features y observations after time-demeaning

(subtracting individual means). Please note that proper ordering of the observed vari-

ables yit in y is necessary, with t being the “fast” index. Alternatively, we can define ÿ ob-

servations as ÿit = yit− ȳi. Because individual effects are time-invariant, µ̈i = µi−µ̄i = 0

for all spatial units and µ disappears from (4.17). The calculation of Ẍ and definition

of ϋ are analogous to ÿ [71].

The log-likelihood function corresponding to (4.16) is

LL(β, λ, σ2υ) = −NT
2

log
(
2πσ2υ

)
+ T log |AN | −

NT

2σ2υ
e′e , (4.18)

where e=y − λ (IT ⊗W )y −Xβ and AN = (IN − λW ) was already defined for (4.8).

Following the approach in [71], expression (4.18) is maximized as follows: We start with

two auxiliary regressions performed using the transformed variables from (4.17): ÿ and

(IT ⊗W ) ÿ are separately regressed on Ẍ and we store the corresponding residuals as

ë0 and ë1. Next, we can formulate a concentrated log-likelihood function

LL = c+ T log |AN | −
NT

2
log
[
(ë0 − λë1)′(ë0 − λë1)

]
, (4.19)

where c is a constant (does not depend on λ). Numerical optimization is used to obtain
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λ that maximizes the expression (4.19). β and σ2υ are then calculated from the first order

conditions for (4.18) as λ is replaced by its (4.19) estimate. The asymptotic variance-

covariance matrix for the estimated parameters (β, λ, σ2υ) is provided in [71].

Using the estimated FE model (4.16) parameters, we may also obtain estimates of indi-

vidual effects as follows:

µ̂i =
1

T

T∑
t=1

yit − λ̂
 N∑
j=1

wijyjt

− xitβ̂
 . (4.20)

However, for short panels (N � T ), enough observations for reliable µi estimation often

do not accumulate.

Fixed effects spatial error model

Spatial lag of the dependent variable is absent in the FE spatial error model. The FE

spatial error model may be outlined as a simplified version of the (4.1) specification:

y = (ιT ⊗ IN )µ+Xβ + ε ,

ε = ρ (IT ⊗W ) ε+ υ .
(4.21)

The estimation of FE spatial error model (4.21) extends easily from the cross-sectional

SEM case described by (3.13) and (3.14). The log-likelihood function corresponding to

(4.21) can be written as follows:

LL(β, ρ, σ2υ) = −NT
2

log
(
2πσ2υ

)
+ T log |BN | −

1

2σ2υ
e′
[
IT ⊗

(
B′NBN

)]
e , (4.22)

where e = y − Xβ and BN = (IN − ρW ) follows from (4.6). Again, concentrated

log-likelihood functions serve for iterative parameter estimation of the (4.21) model.

Detailed estimation algorithm is provided e.g. in [71], along with corresponding asymp-

totic variance-covariance matrix of parameters. After estimation, individual effects can

be retrieved from the model as

µ̂i =
1

T

T∑
t=1

(
yit − xitβ̂

)
, (4.23)

for which identical reliability issues as in (4.20) would apply.

The above list of RE and FE spatial models and their estimation methods provides just a
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brief overview. Technical details of the estimation routines are not included as those may

differ slightly among diverse software packages. For detailed technical descriptions, see

e.g. Elhorst [28] or [29], who also provides a non-matrix-notation overview of the above

specifications of RE and FE spatial models, along with alternative estimation methods

(if applicable), empirical illustrations and useful references to supplementary literature.

Additionally, different GMM estimation methods and statistical inference procedures

relevant for diverse types of RE and FE spatial panel specifications are covered e.g. in

[71].

RE vs. FE: Hausman test

The testing of random effects assumptions with respect to an estimated spatial panel

model (RE vs. FE tests) is an essential part of RE model-estimation and verification.

The original Hausman test was introduced in [56] for non-spatial panel data models.

By comparing the RE and FE estimators for a given model specification, the Hausman

statistic is used to test whether RE assumptions are supported by the data. Fortunately,

Hausman test extends relatively easily to spatial data and models. Mutl and Pfaffermayr

[74] provide a generalization of the Hausman test for spatial panel data. The test statistic

can be written as

H = NT
(
θ̂RE − θ̂FE

)′(
Σ̂RE − Σ̂FE

)−1(
θ̂RE − θ̂FE

)
∼
H0

χ2
k , (4.24)

where θ̂RE and θ̂FE are the RE and FE-based estimates of spatial panel model param-

eters, while Σ̂RE and Σ̂FE are their corresponding variance-covariance matrices. Under

H0 (RE assumptions hold), the test statistic is asymptotically χ2-distributed with k de-

grees of freedom where k is the number of regressors. For technical details and additional

tests relevant for RE and FE spatial models (linear restrictions, etc.), see [71].
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This chapter provides a brief description of two types of advanced spatial panel data

models: dynamic and hierarchical. As spatial models are subject to ongoing theoretical

and methodological research, new types of models and approaches are constantly emerg-

ing. An overview of relatively advanced models, along with corresponding assumptions

and estimation methods, can be drawn from a survey article by Lee and Yu [64].

5.1. Spatial panel data: dynamic models

Spatial dynamic panel data (SDPD) models encompass both spatial and time (dynamic)

effects and allow researchers to quantify and evaluate spatial and time dependencies along

with main effects (say, macroeconomically determined). Elhorst [28] provides a set of

general features (DGP aspects) that SDPD models should account for:

• Serial dependency (time-autocorrelation) in observations for each spatial unit si.

• Spatial interactions (spillovers) among neighboring units at each time period.

• Unobservable effects (both individual and time-effects).

• Possible endogeneity of regressors (not limited to spatial and/or temporal lags of

the dependent variable).

A very general SDPD model specification – a counterpart to the GNS model (3.2) for

cross sectional data – may be cast as follows:

yt = τ1yt−1 + λ0Wyt + λ1Wyt−1 +Xtβ0 +Xt−1β1

+WXtθ0 +WXt−1θ1 +Ztπ + νt , (5.1a)

νt = ρ1νt−1 + ρsWνt + µ+ γtιN + εt , (5.1b)

µ = φWµ+ ξ , (5.1c)

where yt is a (N×1) vector of observations for all spatial units si at a given time period

t. Xt and Zt are (N×k) and (N×`) matrices of exogenous and endogenous regressors
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respectively. W is a spatial weights matrix that follows from previous chapters, e.g. from

equation (3.2). β0, β1, θ0 and θ1 are (k×1) response parameter vectors corresponding

to exogenous regressors and π is an (`×1) vector of parameters for the endogenous

regressors. νt is the error term of model (5.1) and it is assumed to be correlated both

in space and serially (in time).

Following the approach in [28] or [64], there is no Wνt−1 included in (5.1b) – we do not

assume a spatial lag effect from temporally lagged error term νt−1 on νt. µ contains

individual effects µi – those are time-invariant and serve for controlling unobservable

spatial effects (their exclusion from the model would lead to biased estimation of the

response parameters).

Similarly, γtιN is a (N×1) vector of time effects specific for each time period t, used

to control for unobservable time effects (unit-invariant). From (5.1c), we can see the

spatially autocorrelated nature of µi elements. τ1, λ0, λ1, ρ1, ρs and φ are model

parameters describing spatial, temporal and time-lagged spatial dependencies. Finally,

εt and ξ (which is time-invariant, hence no t subscript) are i.i.d. disturbance terms with

zero means and σ2ε , σ
2
ξ variances.

Stability conditions – necessary for ML estimation of model (5.1) – may be achieved by

imposing restrictions on model parameters and spatial weights matrix W. In equation

(5.1c), restrictions relevant for W and the corresponding parameter φ follow from stabil-

ity conditions discussed in section 3.1: mainly, the row sums ofW are uniformly bounded

as N goes to infinity and (IN − φW ) is non-singular. In equation (5.1b), stability holds

if the characteristic roots of matrix ρ1(IN − ρsW )−1 lie within the unit circle. Simi-

larly, for equation (5.1a), the characteristic roots of matrix (τ1IN +λ1W )(IN −λ0W )−1

should also lie within the unit circle. Also, matrices (IN − λ0W ) and (IN − ρsW ) have

to be non-singular for model estimation. Stability conditions discussed here are derived

and described in detail by Elhorst ([26] and [27]) who also shows the inherent trade-off

between magnitudes of spatial and temporal autocorrelation coefficients in model (5.1).

SDPD estimation

If model (5.1) can be reasonably simplified to dynamic non-spatial specification by setting

λ0 = λ1 = 0 and θ0 = θ1 = 0, then model estimation can be performed by applying

the Arellano-Bond GMM-based estimator – see e.g. [8] or [49] for detailed description.

Similarly, if we are able to reasonably ignore all temporal autocorrelations by setting

τ = λ1 = 0 and β1 = θ1 = 0, then the resulting static spatial panel models can be

estimated using methods discussed in sections 4.1 and 4.2.
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In SDPD model specifications where time and space lags are present simultaneously, pa-

rameter estimation becomes rather complicated. Different small-sample and asymptotic

properties apply, depending on panel dimensions and effect assumptions used (short vs.

long panels and FE or RE). For example, [64] shows that even as time and individual

dimensions go to infinity (at the same rate), there is an asymptotic bias present in the

autoregressive parameter(s) for both ML and instrumental variable (IVR) estimation

. To address this problem, Bun and Carree [19] provide a bias-corrected (analytically

modified FE) estimator, while other possible approaches to bias correction in “large N

and T” SDPD models involve e.g. a Jacknife-based procedure discussed in [53].

Besides the above-mentioned issues in asymptotic behavior of SDPD model estimators

for different panel dimensions and estimator types, the situation may be complicated

even more by violation of different stability assumptions corresponding to individual

equations of model (5.1). Different spatial arrangements and corresponding estimation

approaches (including spatial cointegration and ECMs) are discussed in [64]. Finally,

the case of temporal unit root in the dependent variable of model (5.1a) (i.e. τ1 = 1) is

addressed e.g. in [86], along with model estimation methods and asymptotic behavior

of the estimators.

5.2. Hierarchical spatial panel data model

Fingleton et al. [34] outline a “three-dimensional” (hierarchical) spatial panel model

with complex spatial interaction effects. Besides a standard spatial lag in the dependent

variable, their model features nested random errors that follow a spatial moving average

process. Using a unit-specific notation, their model can be outlined as follows:

yijt = λ

 N∑
g=1

Mg∑
h=1

wij,gh yght

+ xijtβ + εijt ,

εijt = uijt − ρ
N∑
g=1

Mg∑
h=1

mij,gh ught ,

uijt = αi + µij + υijt ,

(5.2)

where yijt is the dependent variable and the three subscripts are designed to describe the

hierarchical and panel data structure: i = 1, 2, . . . , N describes groups, j = 1, 2, . . . ,Mi

denotes the number of individuals in an i-th group (Mi values may differ between groups)

and t is the temporal subscript. By analogy to equation (5.1), xijt is a (1×k) row vector
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5. Advanced spatial panel models

of regressors, β is a (k×1) vector of regression coefficients and εijt is the disturbance

element. wij,gh are the elements of the ij-th row (j-th element within group i) of a

row-standardized weights matrix W such as (2.2) and the subscripts gh relate to h-

th individual within group g. The symbol λ denotes the usual spatial lag parameter

(stability conditions apply).

Disturbances εijt are contemporaneously correlated through a moving average process

at the individual (ij) level. mij,gh are elements of a spatial weights matrix M (in this

model, W and M can represent different neighborhood patterns) and uijt is assumed

i.i.d. distributed with zero mean and constant variance σ2u. In model (3.26), spatial

heterogeneity is described through uijt: we have a group-specific time-invariant element

αi, a nested (time-invariant) unit-specific element µij and a white-noise element υijt.

All three elements (αi, µij and υijt) are assumed i.i.d. distributed with zero means and

variances σ2α, σ
2
µ and σ2υ respectively.

Estimation of the hierarchical spatial model

Parameters of the model (5.2) can be estimated by the ML approach described in [3].

Fingleton et al. [34] point out the problematic (restrictive) nature of distributional

assumptions that need to be explicitly formulated for ML estimation, along with po-

tentially severe complications from possible regressor endogeneity and computational

complexity issues originating from ML estimation of complex models such as (5.2). In-

stead of ML estimation, they propose a three-stage IVR-based estimation method as

follows: In the first stage, spatial lag panel model is estimated using IVR. In the second

stage, a GMM approach is used to estimate the spatial moving averages parameter ρ and

the variance σ2u (using residuals from the first stage). In the third stage, a transforma-

tion similar to Cochrane–Orcutt approach [49] is combined with an IVR estimation to

disentangle the structure of random elements u. The derivation and detailed discussion

of the three-stage estimator and its properties are provided in [34].
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6. Analysis of regional unemployment

dynamics using Getis’ filtering approach

This chapter is mostly based on the application part of [38] by Formánek and Hušek.

6.1. Spatial analysis of unemployment dynamics

As quantitative macroeconomic analyses are often performed at the regional level, sta-

tistical effects of spatial dependency in observed data should be addressed. Spatial

autocorrelation violates basic assumptions of independence among observations of vari-

ables used for estimation of regression models [85]. As discussed by [28, 39, 67] and by

numerous other authors, uncontrolled spatial autocorrelation leads to biased model esti-

mates and/or biased significance statistics. A common econometric practice is to directly

(parametrically) estimate spatial dependencies – either by maximum likelihood methods

as in [28] or through a Bayesian approach described in [67]. Unfortunately, ML-based

parametric approaches rely heavily on pre-specified distributional assumptions [82]. An

alternative approach to the parametric spatial-dependency modeling is used here: a

distribution-free & non-parametric approach pioneered by Getis [45] is applied to “filter

out” spatial dependencies from the data.

This section provides an empirical application focused on unemployment dynamics and

its major constituent factors. Besides model estimation and interpretation, stability

of the results is cautiously evaluated under varying neighborhood definitions. In this

application example, regional unemployment dynamics at the NUTS2 level is analyzed

for the following 10 countries: Austria, Belgium, Czechia, Denmark, Germany, Hungary,

Luxembourg, the Netherlands, Poland and Slovakia. Figure 6.1 is provided for basic

illustration of the regional unemployment modelled, its spatial distribution and regional

dependencies.
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Figure 6.1.: Choropleth of 2015 unemployment rates – NUTS2 level. Source: Own cal-
culation using GISCO – Eurostat data.

6.2. Methodology and data

The following empirical estimates are based on the Getis filtering approach. For detailed

description of the underlying theory and data transformation (spatial filtering) process,

see section 3.3.

Next, a linear regression model describing regional unemployment dynamics is presented.

A relatively simple, yet informative and theoretically well-established model that draws

from the “regional competitiveness’ theory [39] is defined by equation (6.1), explaining

unemployment dynamics in terms of its key determining factors: GDP per capita and

two convenient labor-force structure and competitiveness indicators: the high-tech sector

to total labor force ratio represents the relative predominance of this sector in economy.
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6. Analysis of regional unemployment dynamics using Getis’ filtering approach

Also, an analogous ratio for the sector of services (with a high proportion of unskilled

labor input and predominant non-exportable i.e. non-tradable output) is presented. The

model is defined as follows:

UNi = β0 + β1 GDPi + β2 HTCi + β3 Servicesi + εi , (6.1)

where UNi is the overall unemployment rate observed in the i-th spatial unit (specifically,

we use NUTS2 unemployment data from the Eurostat’s “lfst r lfu3rt” dataset), GDPi

is the region’s log-transformed GDP (euro per capita, “nama 10r 2gdp” dataset), HTCi

describes the percentage of employees working in the high-tech industry (NACE r.2 code

HTC, “htec emp reg2” dataset), Servicesi is the proportion of employees within the

aggregated services sector (NACE r.2 code H-U, “htec emp reg2” dataset), βj are model

parameters to be estimated and εi is the random error. Equation (6.1) is estimated using

observed 2015 data, based on a total of 111 NUTS2 regions (see figure 6.1) from Austria,

Belgium, Czechia, Denmark, Germany, Hungary, Luxembourg, the Netherlands, Poland

and Slovakia. Although observations in some spatial data series featured in model (6.1)

may cover the period from 1999 to 2017, complete datasets for 2016 are not yet available

from Eurostat at the NUTS2 level (as of March 2018).

6.3. Empirical results

Before actual model estimation, we begin by evaluating assumptions for the Getis fil-

tering method: All the observed variables as per equation (6.1) exhibit positive support

for our 111-unit sample. Also, all variables are positively spatially autocorrelated at the

5% significance level as tested using the Moran’s I statistic (2.7).

Table 6.1 shows key estimation outputs for model (6.1). Model estimation is provided

in three versions: first, model (6.1) is estimated using spatially unfiltered data – output

from a linear regression for a non-spatial model specification of (3.1) type is shown.

Second, spatially filtered data are used – model (6.1) is estimated using spatially de-

meaned/filtered data as defined in equation (3.26), with maximum neighbor distance

threshold τ set to 165 km. This threshold was set empirically, based on the maximized

log-likelihood (LL) statistic (LL has indicative properties only, please see following para-

graphs for discussion of limits of the LL-based model comparison within the Getis filter-

ing paradigm). The third estimation output also features spatially filtered data. Here,

the τ = 217 km threshold relates to an interesting locally optimal spatial setup (see fig-

ure 6.2 and – more importantly – it closely matches our previous findings [39] obtained
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6. Analysis of regional unemployment dynamics using Getis’ filtering approach

for a spatial lag model defined in terms of equation (3.2).

Table 6.1.: Estimated model, alternative spatial setups used

Model type Coefficients Estimates Std. Errors t-values Pr(>|t|)
Non-spatial (Intercept) 31.565 3.733 8.457 0.000
linear GDP -4.046 0.503 -8.041 0.000
model HTC -0.208 0.139 -1.498 0.137
specification Services 0.240 0.036 6.659 0.000

Data (Intercept) 7.513 6.740 1.115 0.268
spatially GDP -1.088 0.782 -1.390 0.167
filtered with HTC -0.354 0.148 -2.399 0.018
τ = 165 km Services 0.161 0.043 3.785 0.000

Data (Intercept) 11.518 7.026 1.639 0.104
spatially GDP -1.629 0.805 -2.023 0.046
filtered with HTC -0.311 0.141 -2.210 0.029
τ = 217 km Services 0.180 0.043 4.224 0.000

Before discussing the estimation results as shown in table 6.1, we need to address spatial

setups and the range of τ distance thresholds used for estimation. In order to evaluate

model robustness and statistical properties under different spatial settings, equation

(6.1) was estimated using spatially filtered data over a very extensive range of distance

thresholds τ : starting from a sparse spatial matrix S, constructed for τ = 160 km (lower

τ values result in “islands” – regions without neighbors – that are incompatible with the

logic of Getis-type filtering). Next, τ thresholds were iteratively increased by a 1-km step

up to a maximum neighbor distance threshold of 1.000 km. Although the τ = 1.000 km

spatial setup is well beyond reasonably assumed spatial interactions of unemployment

dynamics, it provides a nice illustration and comparison between spatial filtering and

non-spatial estimation.

Overall, a total of 841 spatial specifications of our model (6.1) in its spatially filtered

general form (3.26) were estimated. Those are summarized in figure 6.2 as follows: For

each τ , the corresponding Akaike information criteria (AIC) is shown, along with LL,

R2 and βj estimates (intercept excluded) along with their ± one standard error bands.

Results from spatially filtered models are shown in blue, while the non-spatial estimation

is shown in red for comparison (non-spatial estimate remains constant with respect to

changing τ values).

Please note that the AIC, LL and R2 statistics are shown for illustrative purposes only –

as spatially filtered (demeaned) values of the dependent variable differ across alternative
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6. Analysis of regional unemployment dynamics using Getis’ filtering approach

τ thresholds (i.e. between estimated models), statistics from different equations cannot

be directly compared against each other. Finally, estimated values for τ = 160 km and

217 km are highlighted by vertical dashed lines.
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Figure 6.2.: Stability evaluation of the model under varying spatial setup. Source: Own
calculation.

Results from table 6.1 and figure 6.2 provide several interesting insights into unemploy-

ment dynamics and its regional aspects. First of all, the expected effect of GDP and

other explanatory variables on unemployment is significantly reduced once regional as-

pects are considered. This attenuation effect is most prominent for smaller τ values,

where spatial filtering is concentrated to a compact neighborhood. This result reflects

the fact that unemployment spillovers are often observed among contiguous (spatially

adjacent) or otherwise very close neighbors.
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Overall, most of the statistically significant differences between spatially filtered and

unfiltered estimates disappear once τ approaches 500 km. Such results are in line with

the theoretically presumed upper bound for unemployment spillover dynamics (spatial

interdependence) where work commuting patterns and similar factors play a significant

role. Please note that distances between regions are measured using centroids and actual

inter-regional commuting distances may be significantly lower than the neighborhood

threshold distance used in expression (2.4).

The estimated coefficients of model (6.1) are in line with theoretical expectations: we find

evidence supporting an inverse relationship between unemployment and GDP growth.

Also, prominent high-tech sector seems to lower the unemployment rate (at the 5%

significance level and this effect is statistically significant in spatially augmented models

only). Finally, we should stress out the fact that the estimated coefficients from a

spatially filtered model such as (3.26) may be directly interpreted, unlike the β and θ

coefficients from the GNM specificatin (3.2), which do not constitute the usual marginal

effects.

6.4. Discussion and conclusions

Spatially augmented models provide an important analysis framework where spatial

patterns can be controlled for. As spatial dependencies are taken into account, we

can see that many coefficients corresponding to “real world” regressors are attenuated

(shrunk towards zero) in spatially augmented models. Along with the detected positive

spatial dependence in observed data, such results have two main interpretations: First,

there is a prominent influence of regional and potentially cross-border (international)

factors in observed macroeconomic data that should be accounted for in quantitative

analyses. Second, empirical results underline the importance of regional (cross-border)

cooperation in macroeconomic policies.

While this analysis focuses on unemployment dynamics, regional interactions and spillovers

are present in most macroeconomic variables and processes. Overall, Getis-type spa-

tial filtering provides a relatively simple and interpretable toolbox for regional (spatial)

analyses for a wide range of variables and research fields (macroeconomy, environmental

studies, epidemiology, etc.).
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7. Spatio-Temporal Analysis of

Macroeconomic Convergence

This chapter is mostly based on the application part of [37] by Formánek.

7.1. Macroeconomic convergence: introduction

Macroeconomic convergence is often studied in terms of GDP per capita dynamics.

Such approach is based on the neoclassical Solow-Swan model of long run growth and

the corresponding analysis framework provided by Mankiw et al. [70]. Their approach

leads to a convenient and empirically testable “β-convergence” model that estimates and

evaluates the presumed inverse relationship between the growth rate of per capita output

over a finite time period and the output level at the beginning of the period. This chapter

focuses purely on β-convergence topics. However, other convergence analysis frameworks

exist. For example, “σ-convergence” processes are described in [79].

The underlying hypothesis for β-convergence is quite simple: we assume that poorer

economies take advantage of their potential and grow faster than the richer ones. In the

long-run, this leads to wealth equalization among originally heterogeneous economies.

Although the intuition behind β-convergence may be simple, empirically we are deal-

ing with complex processes, prone to a continuous stream of diverse shock influences.

Convergence-related topics can be approached and studied from many perspectives, e.g.

focusing on different types of assumptions relevant for the convergence & growth dy-

namics, as discussed e.g. in [70]. In this chapter, the focus is on spatio-temporal aspects

of macroeconomic convergence.

In recent GDP-growth literature, there is a prominent turn from cross-country analyses

towards the sub-national scale; see Piras and Arbia [78] for examples and an exhaus-

tive list of references. At the regional scale, closed-economy paradigms as in [70] are

no longer appropriate – regional economies typically operate as prominently open and

interconnected. Besides the Solow-Swan convergence mechanism, three main drivers of

macroeconomic (NUTS2 level) convergence through regional interactions may be pointed
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out: First of all, unification is institutionalized and incorporated in most EU policies.

Also, factor mobility (labor, capital) and trade relations play an increasingly important

role. Finally, technology & knowledge diffusion processes do provide a positive push to

poorer regions.

Theoretically, the best way to control for such regional interactions would be to directly

include labor, capital and goods movements, etc. into the growth models. In practical

terms, such approach is impossible due to data availability issues, especially with vari-

ables such as inter-regional capital flows and technology diffusion. Here, spatial panel

data methods may provide an indirect, yet feasible and reliable framework to regional

growth and convergence analyses.

Spatial panel data methods – if properly applied – can correct for the inherent bias in

classical cross-sectional growth models [78]. The bias generated by regional differences

is controlled for by the explicit inclusion of individual (regional) effects that control for

individual heterogeneities within the panel data paradigm [84]. Spatial interdependencies

are also explicitly modeled in spatial models [28, 67]. As a consequence, spatial panel

approach allows us to accurately differentiate between the two types of effects: individual

and spatial.
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Figure 7.1.: Choropleths with 2000 & 2015 relative GDP per capita – NUTS2 level.
Source: Own calculation using GISCO – Eurostat data.

This chapter provides a thorough integration of spatial modeling to the panel data-based

analysis of regional convergence dynamics in terms of GDP per capita. In contrast with

previous attempts in this field of research [78], proper interpretation of the ceteris-paribus
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effects is used here (see section 7.2). The theoretical part of spatial panel analysis is ac-

companied by a β-convergence model describing regional growth dynamics at the NUTS2

level for the following six countries: Czechia, Slovakia, Poland, Hungary, Germany and

Austria. For illustration of the convergence process, figure 7.1 compares relative GDP

per capita levels as of 2000 and 2015: prominent & stable spatial patterns are apparent,

while the presumed time convergence is not quite visually identifiable.

7.2. Macroeconomic convergence: empirical results

In this section, a relatively simple yet efficient spatial panel β-convergence model is

established. Our model is based on annual growth dynamics and it follows the method-

ology used in [78]. However, it should be noted that the y-o-y dynamics is not ideal for

addressing convergence processes that are a long-term phenomenon by nature. There is

an ongoing discussion related to the estimation of β-convergence models using datasets

covering relatively short time periods [78]. Wider time spans would increase the accu-

racy of tackling true convergence dynamics (instead of adjustments towards some trend

after random shocks).

In fact, we face a trade-off here: while evaluating growth (β-convergence) over a longer

time period (as compared to t-1 lags) is better for capturing true long-term growth

dynamics, such approach considerably limits the number of observations available for

model estimation.

Although data availability restrictions cannot be circumvented, we may take advantage

of some rather non-restrictive assumptions: Our dataset features regions at diverse de-

velopment stages – compare the GDP per capita among South-German regions, spatial

units in the former East-Germany, Czechia and the Eastern parts of Poland. If properly

controlled for (using spatial panel models), regional heterogeneity adds variability to the

set of regressors and thus it can add reliability to our estimates, therefore somewhat

compensating for the limited time-span currently available from Eurostat.

The model used for β-convergence evaluation may be outlined as

log

(
yit
yi,t−1

)
= λ

 N∑
j=1

wij log

(
yit
yi,t−1

)+ β log (yi,t−1) + µi + υit , (7.1)

where yit is the GDP per capita observed in the NUTS2 region i at time t. Eurostat’s

“nama 10r 2 gdp” dataset is used, with annual 2000 – 2015 GDP observations recorded
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in 2010-constant prices. All the observed data exhibit strong positive spatial autocorre-

lation when tested using the Moran’s I statistic.

Logarithmic transformation provides the desired growth-rate interpretation: the LHS

of equation (7.1) is the annual growth of real per capita income. The first element

on the RHS is the spatial lag and it follows from (4.1). Besides observed variables,

coefficient λ and β along with the time-invariant & region specific effects µi (reflecting

all omitted variables that influence the growth process) constitute the functional form

of our spatial panel model. The wij spatial weights (elements of W ) are constructed

using the maximum neighbor distance rule, with threshold set to 170 km. υit is the error

term with properties corresponding to equation (4.6). Although equation (7.1) contains

the first time-lag of yit, the model doesn’t have an actual dynamic specification. In fact,

equation (7.1) is an empirical implementation of the RE model (4.6). In model (7.1),

negative β coefficients are consistent with the presumed inverse relationship between

growth rates and the lagged GDP level values.

Equation (7.1) is estimated using a balanced panel of 82 NUTS2 regions (displayed in

figure 7.1) across 16 years. Hence, a total of 1.312 individual observations of GDP

per capita are collected from the following EU members: Austria (9 NUTS2 regions),

Czechia (8 regions), Germany (38 regions: from those 8 (plus Berlin) are from the former

East-Germany), Hungary (7 regions), Poland (16 regions) and Slovakia (4 regions). For

analysis and verification purposes, diverse modifications and restrictions are applied to

model (7.1): all the specifications used for estimation are described below and summa-

rized in Table 7.1.

Table 7.1 illustrates the importance of controlling for both region specific effects and

spatio-temporal dynamics in β-convergence models. Eight different specification variants

of equation (7.1) are used for estimation and comparison of the β coefficients: (a) comes

from a basic pooled regression estimate, with individual and spatial effects ignored –

λ is set to zero and the µi intercept is identical for all units. In (b), model (a) is

augmented by two dummy variables: one controls for the 2009 drop in output due to the

global economic crisis, while the other dummy variable distinguishes “old EU” regions –

NUTS2 regions in Austria and in the former West Germany – from their post-communist

counterparts. Although statistically significant, the two dummies are not reported in

Table 7.1, as they only serve to filter out two most prominent inconsistencies in the

data generating process (DGP) under scrutiny, i.e. to obtain accurate β-convergence

indicators with proper ceteris-paribus validity.
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Table 7.1.: Estimated alternative specifications of the β-convergence model

Model specification
(classical approach) (a) (b) (c) (d)

β̂ -0.00418 -0.00393 -0.01070 -0.01070

s.e.(β̂) (0.00026) (0.00036) (0.00128) (0.00128)
t value [-16.13869] [-11.02666] [-8.33446] [-8.33078]
Pr(> |t|) 0.00000 0.00000 0.00000 0.00000

Model specification
(spatially augmented) (e) (f) (g) (h)

Direct impacts -0.00216 -0.00149 -0.00116 -0.00084
simulated s.e. (0.00027) (0.00031) (0.00023) (0.00030)
z score [-8.04931] [-4.83524] [-5.07915] [-2.78725]
Pr(> |z|) 0.00000 0.00000 0.00000 0.00532

λ̂ -0.13135 -0.07829 0.89381 0.87027

s.e.(λ̂) (0.06732) (0.07547) (0.01121) (0.01320)
t value [-1.95118] [-1.03744] [79.70808] [65.90509]
Pr(> |t|) 0.05104 0.29953 0.00000 0.00000

Column (c) corresponds to a panel model generalization of (a): with spatial effects

omitted (λ = 0), but accounting for individual effects. In column (c), model (7.1) is

estimated using the FE method as in [84]. Specification (d) augments (c) by using the

same two auxiliary dummies as introduced in (b) – again, the reason is to add control

variables for the two distinct influences affecting GDP growth and thus filtering them

out from the the pursued β-convergence dynamics estimation.

Models (a) to (d) lack spatial dependency features, yet they serve for direct comparison

with their spatially augmented counterparts (e) to (h). Specification (e) amends the

pooled version of (7.1) by introducing a cross-sectional spatial lag as in equation (4.10).

Any individual effects are ignored here. (f) differs from (e) by featuring dummy variables

as in (b) and (d). Specification (g) is the spatial panel model equation (7.1): both region-

specific effects and spatial dependencies are accounted for. Again, model (h) is obtained

by incorporating our two dummies into (g).

All models presented in Table 7.1 are statistically significant at the 5% significance level

and were subjected to the usual model testing and verification procedures as proposed

in [71] and [84]. For example, the RE assumptions for (g) and (h) were tested using

the Spatial Hausman χ2 test (4.24) as in [71] as well as evaluated by generalizing both

models into a CRE specification using the Mundlak-Chamberlain approach from [72]
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7. Spatio-Temporal Analysis of Macroeconomic Convergence

and [84]. The residual elements of models (g) and (h) exhibit no spatial autocorrelation

at α = 0.05. The dummy variables (omitted from Table 7.1) are statistically significant

in all model specifications where they are used, pointing out the important differences

in the DGP of growth in GDP per capita. However, economically speaking, dummies

have only a limited effect on the estimates of β-convergence parameters.

Consistently negative estimates of the β-convergence parameters provide some confidence

in the stability and robustness of the underlying convergence processes of the Solow-

Swan type. Yet, the signs of estimated β coefficients need to be put into perspective:

On one hand, the results provide evidence in favor of the β-convergence mechanism

considered. On the other hand, when the spatio-temporal dynamics of the DGP is fully

and properly accounted for, β̂ values “fall” by an order of magnitude (actually, they are

attenuated towards zero thus reflecting a slower convergence speed). As we compare

the estimated β-convergence parameters (c) against (g) and (d) against (h), we can see

that convergence dynamics change from relatively weak to practically negligible. This

situation is reflected in the formatting of Table 7.1 that features 5 decimal points, as the

usual 3 material points would complicate model comparison.

The estimated spatial autocorrelation parameter λ̂ in Table 7.1 describes the effect of

spatial interactions – it quantifies the systematic pattern in spatial distribution of the

GDP growth rates. As models (e) and (f) do not control for individual effects, we

can see that the spatial dependency coefficient estimates are severely biased: the nega-

tive/insignificant λ̂ estimates contradict to prior theoretical beliefs, to preliminary Moran

I test results as well as to evidence from other published works (e.g. [28], [39] and [78]).

In contrast, with both spatio-temporal and individual effects properly accounted for,

λ̂ coefficients in (g) and (h) confirm the presence of strong regional spillovers and pro-

vide evidence supporting the convergence mechanisms based on spatial lags (presumably

through factor mobility, trade and technological relationships, etc.).

7.3. Results discussion and robustness evaluation

Overall, the estimated models in Table 7.1 are built from the simplest specification (a)

towards more realistic setups. Given all theoretical assumptions and the data-based

evidence discussed above, we may conclude that models neglecting any (or all) of the

unobservable effects (regional specificities and spatio-temporal effects) lead to severely bi-

ased results: the estimated β-convergence parameters in misspecified models are roughly

5 to 10 times stronger as compared to the properly specified spatial panel models (g) or
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Figure 7.2.: Model stability evaluation: different W matrices considered. Source: Own
calculation.

(h). The observed spatial interactions are much more prominent and influential when

compared to the Solow-Swan type β-convergence dynamics.

Given the need for pre-specification of the W matrix (its wij elements) in equation (7.1),

as discussed in chapter 3.1, it is advisable to evaluate model stability against changes in

the ad-hoc specified neighborhood definition. A simple yet effective approach is adopted

and summarized in figure 7.2: model specification (h) as in Table 7.1 is estimated us-

ing alternative W matrices and results from different model setups are compared. The

evaluation process starts with a relatively sparse spatial matrix constructed using a max-

imum neighbor distance threshold set to 160 km (lower thresholds generate disconnected

units that are incompatible with the ML estimation of spatial models). Next, neighbor

threshold distances are increased and new weights matrices are generated by iterations
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7. Spatio-Temporal Analysis of Macroeconomic Convergence

of 10 km, up to a rather generous maximum neighbor distance of 1.000 km – beyond

this threshold, the spatial properties of the model fall apart as the variance of spatial

lag elements in (7.1) quickly falls to zero and spatial weak dependency assumptions are

violated). At each iteration, the β-convergence model is estimated and recorded to figure

7.2: model log-likelihood values are shown, along with λ̂, direct and indirect (spillover)

effects and their asymptotic ± 1 s.e. bands. Finally, the maximized log-likelihood infor-

mation from figure 7.2 is used to select the “best” W matrix from the 85 possibilities

considered: the maximum neighbor threshold distance as used in in Table 7.1 is set to

170 km. Also, figure 7.2 provides enough confidence in overall model robustness.

7.4. Conclusions

This analysis pioneers the estimation and interpretation of impacts for spatial panel

models in the context of macroeconomic β-convergence analysis. Compared to previous

publications (e.g. [78]), this approach properly addresses the ceteris paribus effects in

spatio-temporal models by focusing on the interpretation of direct impacts and spatial

lag parameters instead of the β coefficients of spatial regression models.

Considerable improvement is provided in comparison to the β coefficients-based inter-

pretation, which does not describe model dynamics properly under the spatial lag setup.

Whenever spatial panel data are available, the framework presented here can extend the

classical approach to β-convergence by controlling for both individual differences and

spatial interactions.

The analysis provided in this chapter does not rule out the Solow-Swan type of macroeco-

nomic convergence (β-convergence). However, it seems that this type of growth dynam-

ics is more suitable for closed (large) economies. Using the appropriate spatio-temporal

methodology, we can see that the regions analyzed exhibit prominent spatial conver-

gence tendencies. The spatial part (spatial clustering) effects are much stronger than

the Solow-Swan type β-convergence.
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8. GDP Growth Factors and

Spatio-temporal Interactions at the

NUTS2 Level

This chapter draws from an unpublished article (2nd round of review, submitted to

Journal of International Studies, eISSN 2306-3483) by Formánek.

8.1. Introduction and GDP growth theory

Over the last few years, many European countries have experienced considerable macroe-

conomic growth. Namely, Visegrad group countries and other smaller states in the

vicinity of Germany have benefited greatly from cooperation with the strong and export-

oriented industrial sectors of German economy and from the business opportunities orig-

inating therein. However, even during this period of economic expansion, actual growth

rates differ significantly among regions. Figure 8.1 highlights the total variability of 2010

— 2016 GDP per capita growth (in 2015 real prices): while the average growth (calcu-

lated over the whole period) is 6.61 %, eight of the best performing German regions grew

by 14 % or more. At the same time, 25 of the 113 NUTS2 regions grew by 3 % or less

(again, calculated over the whole 2010 – 2016 period) and real GDP per capita actually

decreased in 14 of these regions. Holland’s region Groningen (NUTS2 code NL11) is the

worst-performing spatial unit (outlier), clearly observable from figure 8.1. This unit has

experienced a decline of 23.13 % in real GDP per capita, mostly due to the reduction of

natural gas extraction over the past few years (see Eurostat, [31]).

Besides observed differences in macroeconomic growth during favorable times, both eco-

nomic theory and historical experience suggest that tougher times may be lurking ahead.

Also, crises often come suddenly and “unexpected” by mainstream economists. This

paper does not search for signs of an upcoming slowdown period or crisis. Instead, dif-

ferences in observed GDP per capita growth are explored and growth-driving factors

are carefully examined with the aim of providing actionable suggestions that might be
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Figure 8.1.: Real GDP per capita growth (2010 – 2016), NUTS2, fixed prices (2015).
Source: Own calculation using GISCO – Eurostat data.

used by policy makers in the near future. To provide such output, this analysis covers

a sample of 11 relatively heterogeneous and spatially close EU member states at the

NUTS2 regional level (113 regions) over a period of 7 years (2010-2016).

Geographically, historically and otherwise induced differences are a prominent feature

in most regionally determined (geo-coded) data. In this paper, such differences are con-

trolled at two levels: both individual (regional NUTS2) and state-level characteristic

features (i.e. differences) are accounted for. This allows for structured and complex

ceteris-paribus analysis of diverse theoretically and empirically established factors influ-

encing macroeconomic growth (given e.g. in terms of GDP per capita changes). Indica-

tors of labor force economic activity and structure are used, along with other variables
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such as R&D expenditures, transportation infrastructure (density), etc. By combining

the above-mentioned methodology and observed data, this chapter shows potential tar-

gets for economic policies aimed at boosting macroeconomic growth that are also useful

for managing regional cohesion policies. Strong focus is given to evaluation of results’

stability and robustness against changes in model specification and assumptions im-

posed. During the analysis, important data availability issues were present (see detailed

discussion in section 8.3).

Literature review

As one aims at studying macroeconomic growth and its dynamics, there are many diverse

and valid approaches that can provide useful insight. Some authors even point out the

lack of unifying paradigm concerning economic growth analysis, which persists even

after decades of focused theoretical and empirical research (see e.g. [9]). Nevertheless,

there are some basic elements that are generally deemed important for economic growth

regardless of the theoretical framework used. For example, research and development

(R&D) activities, measured in terms of R&D expenditures/investments are frequently

considered in empirical studies and their effect has been repeatedly evaluated and tested

(for focused analysis, see e.g. [14]).

To discuss economic growth theory, one would usually start with the neoclassical long-

term model and data analysis approach (using highly aggregated variables), pioneered

by Mankiw et al. [70] who laid ground to the widely used β-convergence approach

that examines the inverse relationship between GDP per capita growth and its “base”

value, measured at the beginning of some conveniently preset period. This methodology,

generally based on the Solow-Swan model of long-run growth (see e.g. Solow, [80]),

predicts convergence in growth rates on the basis that poorer economies would grow

faster than richer ones. The β-convergence paradigm has become quite popular and

many research papers have been published to date in this field; Piras and Arbia [78]

provide one such contribution, along with extensive and representative references to peer

papers.

Despite β-convergence’s popularity, there are important contradicting theoretical ap-

proaches that predict the emergence and persistency of macroeconomic inequalities

through self-reinforcing growth processes. For example, a growth theory based on cumu-

lative causation that was first developed by Myrdal [75] predicts economic inequalities

and imbalances as the most probable outcome of economic growth; the need for stabiliz-

ing (cohesion) economic policies is implied. Using a more sophisticated and formalized
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methodology, the New Economic Geography (NEG) is a theoretically based approach

that views initially more developed countries (regions) as benefiting from compound ef-

fects such as increasing returns to scale, manufacturing agglomeration, transportation

costs, etc. Therefore, most NEG-based empirical papers (e.g. [42]) put great emphasis

on spatial clustering (including economic specialization topics) and spillover effects.

Although the dispute between β-convergence and NEG approaches cannot be settled

easily, the pro-convergence paradigm seems to be more prominent in current litera-

ture. Adopting a somewhat parallel perspective, various authors emphasize the role of

“soft” (socio-cultural, knowledge-based and related) factors on economic growth. Jut-

ting [58] provides a comprehensive analysis of institutions, institutionalized development-

supporting mechanisms, their differences and/or bottlenecks that can explain inequalities

in achieved growth rates.

Should we extend our attention beyond long-term aspects of economic growth, the anal-

ysis of short-term economic dynamics has many relevant implications as well. For exam-

ple, Hamilton and Owyang [54] study macroeconomic co-movements and geographically

defined differences across U.S. states. While focusing on short-term macroeconomic be-

havior – propagation of regional recessions -– they use Bayesian methods and analyze

recession-timing differences and geographical clustering. Here, quarterly data (1956Q2

to 2007Q4) are used for modelling how regions (federal states) are entering recessions and

recovering before/after others. While important strong nation-wide (common) compo-

nents to most recessions are identified, individual heterogeneities turn out to play crucial

roles in regional recession timing and intensity.

At the geographic scale (as opposed to short and long-term classification in time),

methodological and data aspects of individual analyses may also differ significantly.

Some authors use world-wide datasets to model output dynamics and its determinants:

for example, Choudhry [20] uses a panel of 45 countries (highly diverse economies are

followed for the period 1980 to 2005) to evaluate the effect of factors such as labor force

participation, urbanization, information and communication technology (ICT) preva-

lence, etc. and their impact on macroeconomic growth in developed and developing

countries. In contrast, Gauselmann et al. [43] provide a compelling analysis of foreign

direct investments (FDI) within a relatively small area: NUTS2 regions in the Czech

Republic, Poland and former East Germany. Using a proprietary “IWH FDI Micro

database” of the Institute für Wirtschaftsforschung Halle organization, this analysis de-

scribes how agglomeration (i.e. clustering) influences FDI dynamics (a major factor of

macroeconomic growth), while controlling for other key aspects such as production costs,
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subsidies, etc.

Given the regional focus of this chapter, financial sector (individually observable at the

state level, not regionally), its development and potential influences on economic growth

are abstracted from. Nevertheless, the model given by equations (8.1) and (8.2) provides

reasonable state-level differentiation and thus allows for implicit and separable control

over both regional and state-wide effects. For specialized discussion of financial sector

and its impact on economic growth, please refer e.g. to Beck [13] and to the literature

listed therein.

This research attempt is not motivated in terms of searching for unification of growth

theories or evaluating their validity. Instead, using a mainstream approach and gener-

ally accepted relevant assumptions, the focus is on providing empirical and actionable

information concerning relevant economic growth factors in a spatially compact yet eco-

nomically diverse group of countries (EU members) over a short-to-midterm time span.

Methodology-wise, this application extends and improves the panel data approach –

used e.g. in [12] – by accounting for spatial aspects and dependencies.

8.2. Methodology and data

As economic research scopes differ, spatial dependency definitions may differ accordingly.

Using economic theory and statistical inference, researchers usually need to evaluate

diverse spatial structure settings; both in terms of conceptual and parametric differences.

The panel data spatial error model specification and estimation methodology used here

follows from the theoretical work by Kapoor et al. see [59]. In its general form, the

model assumes spatial correlation in both individual effects and the remaining error

components. Although (8.1) may look similar to the specification (4.1), different spatial

spillover mechanisms take place here:

y = Xβ + u ,

u = ρ (IT ⊗W )u+ ε ,

ε = (ιT ⊗ IN )µ+ ν ,

(8.1)

where u is a compound and spatially dependent disturbance vector of panel model

(8.1) and the structure of ε innovations allows for the individual innovations εit to

be correlated over time as µ is a vector of unit-specific (time-invariant) elements, i.e.

individual effects. The error component ν varies both over cross-sectional units and over

time. β and ρ are the parameters of interest, estimated by ML approach [71]. Model
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(8.1) belongs to a class of spatial error models (other specifications may involve spatial

interactions in the dependent variable and/or spatial interactions among regressors) and

its functional form was chosen (with respect to observed data) by means of specialized

Lagrange multiplier tests for spatial dependency identification, introduced by Anselin et

al. in [7].

A relatively simple yet informative and theoretically well-defined regression equation

is used for estimating economic growth dynamics. Specification (8.2) was established

iteratively (strong data availability issues are discussed separately), with the panel model

in [20] serving as a starting point. In a simplified form – equivalent to the first row of

model (8.1) – the regression equation may be outlined as follows:

log(GDPpcit) = β0 + β1ActShFY15-64it + β2Unemit + β3 log(R&Di,t−1)

+ β4 log(MWkmsqit) + β5Y09GDPpci + β6RelEmpM &Nit

+ β7 (Y09GDPpci × RelEmpM &Nit) +D′i θ + uit ,

(8.2)

where log(GDPpcit) is the dependent variable: log-transformed GDP per capita (fixed

prices, 2015) in a given NUTS2 region (113 regions, each identified by the i index)

observed at time t = 2010, . . . , 2016. ActShFY15-64it is the ratio of economically active

female population to total female population for the age group 15 to 64 years. Unemit is

the unemployment rate, given as proportion (i.e. 0.03 instead of 3%) and log(R&Di,t−1)

describes R&D expenditures (in fixed 2015 prices) standardized to R&D per employee for

consistent interpretation and log-transformed; t− 1 lagged values are used to control for

the empirically based delay between R&D expenditures and their effect on production.

Variable log(MWkmsqit) is calculated as the number of motorway kilometers per one

thousand square kilometers or region’s area (log-transformed observations) and it serves

as a proxy for infrastructure quality (in terms of its relative abundance). Y09GDPpci

is the base year (pre-sample period) observation of the dependent variable (2009 GDP

per capita in thousands EUR, 2015 prices) — it allows for evaluation of convergence

processes as well as for controlling autocorrelation of the observed dependent variable in

time. This variable changes between regions (but not across time) which is reflected in

its subscript (i).

RelEmpM &Nit is the ratio of employees in sectors M (specialized professional, scientific

and technical activities) and N (general business support operations) as per the NACE

rev. 2 Eurostat nomenclature [30]. Although both types of activities aim at streamlining

and enhancing production and productivity, activities listed under section M are de-
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signed primarily to transfer specialized knowledge (activities in the N section are not).

The interaction term (Y09GDPpci × RelEmpM &Nit) allows to describe complex func-

tional dynamics in the effects of its constituent components: the partial effect of one

explanatory variable changes with the value of the other interacting regressor. D′i is

a (1×10) row vector of state-level (NUTS0) dummy variables that equal 1 if the i-th

region (NUTS2) belongs to the corresponding state (NUTS0) and zero otherwise. This

set of dummy regressors is used to control for country-specific differences in production

(historically determined differences in macroeconomic structure, labor productivity in-

equalities, etc.). Germany serves as a reference country, thus it is excluded from this

vector. All βj coefficients and the (10×1) vector θ are parameters to be estimated and

uit is the error term as defined in model (8.1). The presence of time invariant regressors

in model (8.2) led to using the so-called random effects approach (for definition and

testing of the assumptions involved, see [59] or [84]).

Data

All data used for quantitative analysis are retrieved from the Eurostat database, thus

ensuring consistency in observed variables. A balanced panel is used, with 113 NUTS2

regions across 11 states (Austria, Belgium, Czechia, Denmark, Germany, Hungary, Lux-

embourg, the Netherlands, Poland, Slovakia, Slovenia) and annual 2010 — 2016 ob-

servations. Although Eurostat has made a considerable progress in harmonization and

availability of regional data (e.g. NUTS2 and NUTS3 levels), missing data are still a

significant limiting factor for this type of empirical analyses. Also, regions located in

unbroken (complete) study areas are necessary for spatial analysis, which limits data

selection even further. Nevertheless, the dataset used covers a characteristic and diverse

enough set of EU’s economies over a reasonable time span, thus allowing for valid and

representative statistical inference.

For reproducibility purposes, Eurostat identification codes for the data tables used are

provided as follows: GDP per capita is retrieved from the “nama 10r 2gdp” dataset

(including the base year observations), “lfst r lfp2act” is used for information on share

of economically active female population (ages 15 – 64) and “lfst r lfu3rt” is used for

unemployment rates. R&D expenditure data are based on “rd e gerdreg” and the

corresponding standardization (R&D expenditures per employee) is performed using

“lfst r lfe2en2”. Transportation infrastructure data (motorways) are retrieved from

“tran r net” and workforce structure data as per NACE rev. 2 comes from “lfst r lfe2en2”.

Conversion from nominal prices to 2015 real values was performed using “prc hicp aind”
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(relevant for GDP per capita and R&D expenditure). All geographic data (shape-files,

coordinates and areal information) come from Eurostat – GISCO [32].

For the sake of full disclosure, it should be noted that some theoretically valid and

empirically proven variables [20] could not be used in model (8.2) because of missing

data issues. Namely, the share of employees working in the ICT sector (section J of

the NACEr2 nomenclature), gross capital formation, railway infrastructure and other

relevant datasets are not fully available at the NUTS2 level (i.e. not complete enough to

make for a balanced panel dataset). Nevertheless, specification (8.2) is chosen to cover

all relevant and measurable constituent factors affecting GDP and its growth dynamics.
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Figure 8.2.: Spatio-temporal semivariogram of log(GDP per capita), lags 0 to 6 years on
the time axis and distances 0 to 500 km on the spatial axis. Source: Own
calculation.
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The dependent variable log(GDPpcit) exhibits strong positive spatial autocorrelation

when tested using the Moran’s I statistic (4.2). However, the spatio-temporal semi-

variogram (STSV) as per equation (1.17) can be used for a convenient description and

visualization of both spatial and temporal variability aspects in observed data. Using

some simplifying assumptions (for technical discussion and derivation of STSV, see [69]

or [77]), we can easily establish an empirical version of (1.17) and assess variability and

autocorrelation (spatial and/or temporal dependency) in observed data.

We may observe various important spatio-temporal properties from figure 8.2, which is

an empirical STSV for the dependent variable in equation (8.2). First of all, observed

data are highly persistent (autocorrelated) in time. Time lag-based increases in variabil-

ity are relatively small for any fixed spatial distance. This data feature is reflected in

model (8.1) specification, which accommodates temporal autocorrelation. Second, if we

focus on the spatial axis, we can observe a pronounced increase in STSV values along

increasing distances among observation. Next to plot’s origin, the usual spatial “nugget”

is present (in geo-statistics, it reflects micro-scale variations and/or measurement errors

in data). We may see that γ(s, t) increases quite rapidly with spatial distance among

observations: data are more similar to each other (less varied) in closer regions as com-

pared against observations made farther apart in space. Figure 8.2 points towards a

pronounced spatial autocorrelation (dependency) that dissipates over a relatively short

spatial distance. This data property is also accommodated for in model (8.1). Please

note that surface irregularities of the empirical STSV in Figure 8.2 simply reflect the

stochastic and discrete nature of sampling; data grouping (along spatial and time dis-

tances) for variance calculation also plays some role here.

8.3. Empirical results and stability evaluation

For an intuitive percentage change interpretation of the estimated coefficients, dependent

variable of model (8.2) is log-transformed. A potential drawback of using this transfor-

mation lies in the complicated prediction of original variables – model (8.2) predicts

log(GDPpcit), not the original level values. However, this is only a minor concern as this

analysis mainly focuses on evaluation of selected GDP growth driving factors.

Table 8.1 provides coefficient estimates for three alternative model specifications -– two

spatial panel models with different τ values and one pooled-panel & non-spatial reference

model. The first column (a) represents results from the “best” spatial model specifica-

tion, as chosen by varying τ threshold (and thus W specification). Model evaluation is
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performed by means of the maximized log-likelihood statistics, based on observed data

and regressors as per equations (8.1) and (8.2) – see figure 8.3 and the next subsection

for detailed discussion. Middle column (b) contains estimates obtained from an alterna-

tive W specification (τ = 177 km instead of the 288 km in the first column). Arguably,

(b) is the second-best specification (selected by comparing different spatial setups). Fi-

nally, the (c) column contains a base/reference model estimate with all spatio-temporal

dynamics and individual effects ignored.

To keep this section compact and to avoid printing output with marginal relevance, Table

8.1 only features the estimated coefficients β1 to β7 along with the spatial autocorrelation

coefficient ρ, which are deemed relevant for this article, i.e. for analyzing the dynam-

ics of macroeconomic growth. Hence, the intercept and θ coefficients (corresponding to

dummy variables controlling state-level heterogeneities) are omitted. Nevertheless, table

8.1 contains all the relevant and empirically justified information necessary for discussing

macroeconomic growth dynamic and its key constituent factors (while implicitly control-

ling for individual/NUTS2 and country-level/NUTS0 effects). Please note that given the

ML estimation of model (8.1), the usual R2 statistic is not applicable for model evalu-

ation. Instead, the following statistic is used: Pseudo R2 = [corr(yit,observed , yit,fitted]2.

For consistency, this applies to all columns of Table 8.1, although the distinction is not

relevant for column (c).

The estimated ρ coefficients in columns (a) and (b) of Table 8.1 suggest a very strong and

highly statistically significant spatial dependency. From the theoretical perspective, this

supports the overall validity of the methodology used (spatial panel data-based methods)

and enables consistent estimates of the βj coefficients in spatial models. Empirically,

high ρ values underline the importance and prominence of spillover effects that serve as

proxies for multiple minor and/or unobservable interaction mechanisms among neigh-

boring regions and emphasize the significance and potential effectiveness of regional and

cross-border cooperation in macroeconomic policy-making. In column (a) of Table 8.1,

the coefficient β̂1 = 0.2262 may be interpreted as follows: given a one percentage point

(pp) change in female labor-force participation, real GDP per capita would increase by

0.23 % (approximately). Similarly, for β̂2 = −1.2748, if unemployment (Unem) falls by

1 pp ceteris paribus, we would expect a 1.27 % rise in real GDP (and vice versa in the

case of increasing unemployment rate). Lagged R&D expenditures have a positive and

statistically significant effect on the expected overall GDP growth. On the other hand

— given the relative sizes of both variables -– there is only a 0.02 % expected rise in

GDP given a 1 % increase in R&D in the previous period (not 1 pp increase in R&D:
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please note the difference in interpretation as R&D are log-transformed financial data,

not ratio indicators).

As we compare the above discussed coefficients in column (a) to their counterparts

in column (b), we can see that restricting neighbor interactions (by setting τ to 177

km) results in seemingly weaker spatial interactions and stronger ceteris paribus effects

of individual regressors (coefficient estimates farther from zero). Nevertheless, data

support τ = 288 km, which may be observed by comparing log-likelihoods and Pseudo R2

statistics. Interestingly, the ceteris paribus effect of highway infrastructure (its relative

abundance as measured by log(MWkmsqit) is not statistically significant in any of the

model specifications estimated, once other factors as in equation (8.2) are controlled for.

This contrasts with the commonly presumed boosting effects that infrastructure and

corresponding investments have on GDP and its growth and also with the fact that

the pairwise correlation coefficient for log(GDPpcit) and log(MWkmsqit) equals 0.63.

Therefore, log(MWkmsqit) was not excluded from model specification (on grounds of

statistical insignificance) because it provides economic insight and adds explicit control

over an empirically important variable that is also a potential macroeconomic policy tool

(through infrastructure investments). This particular result is somewhat unexpected, yet

diverse empirical studies can often find evidence supporting opposite views.

Besides theoretical justification based on multiple economic growth concepts, the inclu-

sion of base year GDP per capita level (Y09GDPpc) has a sound technical reason as well:

STSV in Figure 8.2 shows that the dependent variable of equation (8.2) is highly autocor-

related in time. Hence, the inclusion of Y09GDPpc addresses temporal autocorrelation

problems in model’s residuals and helps with removing bias and inconsistency from the

remaining βj coefficients in the model (by excluding the base GDP level, estimated

coefficients of other regressors are roughly doubled in all columns of table 8.1). The

coefficient for RelEmpM &N variable suggests a prominent positive effect of increased

knowledge-based economic activities in a given economy/region: as the share of profes-

sional, scientific, organizational and similar employees increases, strong macroeconomic

benefits are expected – even after controlling for regional and state-specific differences.

Such result is in striking contrast with the effects of highway infrastructure. Please

note that given the interaction element (Y09GDPpc× RelEmpM &N), coefficients of the

corresponding main effects (constituent variables present in the interaction) may not be

interpreted on a ceteris paribus basis: their expected effects always depend on observed

values of interacting regressors.
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Table 8.1.: Alternative model specifications & estimates

Spatial Spatial Pooled
panel model panel model non-spatial
τ = 288 km τ = 177 km model (OLS)

(a) (b) (c)

ρ 0.7724 0.6346 –
(standard error) (0.0395) (0.0381)
[p-value] [0.0000] [0.0000]

ActShFY15-64 0.2262 0.3456 0.1886
(0.0989) (0.1001) (0.1134)
[0.0222] [0.0006] [0. 0967]

Unem -1.2748 -1.3931 -1.7222
(0.1086) (0.1081) (0.1310)
[0.0000] [0.0000] [0.0000]

log(R&Dt−1) 0.0174 0.0235 0.0202
(0.0059) (0.0057) (0.0038)
[0.0030] [0.0000] [0.0000]

log(MWkmsq) 0.00001 0.0001 0.0002
(0.0002) (0.0002) (0.0001)
[0.9455] [0.5452] [0.2130]

Y09GDPpc 0.0328 0.0322 0.0457
(0.0015) (0.0014) (0.0014)
[0.0000] [0.0000] [0.0000]

RelEmpM &N 1.0502 1.1723 6.5554
(0.3089) (0.3011) (0.3427)
[0.0006] [0.0001] [0.0000]

(Y09GDPpc× -0.0399 -0.0395 -0.1771
RelEmpM &N) (0.0078) (0.0076) (0.0128)

[0.0000] [0.0000] [0.0000]

Pseudo R2 0.9815 0.9833 0.9913

Log-likelihood 1,542.382 1,538.925 1,129.148

96



8. GDP Growth Factors and Spatio-temporal Interactions at the NUTS2 Level

The estimates in column (c) of table 8.1 are included mainly for reference: as spatial

dependency and individual heterogeneities in the data are ignored, we can see a general

tendency towards exaggeration of regressors’ effects (OLS coefficients are farther from

zero). Finally -– in terms of technical description of the estimated model – column (c)

uses robust Newey-West standard errors [85] and the standard errors in spatial models

(a) and (b) have asymptotic validity as described e.g. by Millo and Piras [71]. The rather

high values of Pseudo R2 coefficients in table 8.1 should be interpreted with caution, as

they are mostly due to the presence of base (i.e. lagged) value of the dependent variable

(Y09GDPpc) in the model.

Model specification robustness: stability of results

Given the diverse options available for specification of the spatial weights matrix W in

model (8.1), parameter estimates generally suffer from an implicit ambiguity potential

and from identification problems. To address this issue, model robustness was evalu-

ated against changes in neighborhood definitions. Using regressors from equation (8.2),

multiple estimations of the spatial panel model (8.1) were performed, based on observed

panel dataset while varying W . Figure 8.3 provides a concise robustness evaluation

summary; the information provided therein can be described as follows: The estimation

starts with a sparse W matrix constructed using τ = 160 km (lower i.e. more restric-

tive τ thresholds would generate unconnected regions – islands – that are incompatible

with the ML estimation method) and then neighbor threshold distances are increased

by iterations of 1 km, up to a maximum neighbor distance of 500 km. At each step,

new W matrix is generated and the model is estimated. Overall, 341 alternative spatial

structures and corresponding coefficient estimates are plotted in figure 8.3.

The relative instability of estimates at the lower end of the τ interval is not surprising:

while 160 km is a feasible threshold (no island-regions are generated), such a short limit

on neighbor interaction is too restrictive and the corresponding spatial structure is not

realistic: W “prohibits” interactions among relatively close regions where spillovers and

interactions are actually taking place. Similarly, very large distance thresholds (around

400 km or more) are not empirically justified either. Beyond the 400 km neighbor

threshold, there is little theoretical and empirical evidence for the abundance of spatial

interactions modelled and the log-likelihood statistics decrease quickly to levels that

provide no improvement over non-spatial models. For reader’s convenience, the “best”

W specification (at τ = 288 km) – as measured by the maximized log-likelihood statistics

– is highlighted by a vertical dotted line in each element of figure 8.3. Hence, the dotted
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NACE2 M&N Employment (%) Base GDP 000 EUR pc (2009) Interaction

Y15−64 Fem Act (%) Unemployment (%) log R&D Exp (t−1)

LogLik [rho] log MW km per 000 km2
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Figure 8.3.: Stability analysis of the estimated spatial error model. Source: Own
calculation.

lines mark coefficient values in the (a) column of table 8.1. At τ = 177, where the

(b) column is generated, an isolated and unstable local maximum of the log-likelihood

statistic may be observed in the top-left element of figure 8.3 (this result is not very

robust against small changes in τ and W definition).

From the log-likelihood values shown in figure 8.3, one can see at least three local max-

ima that are associated with potentially diverging coefficient estimates and significance

intervals. However, the estimated coefficients show reasonable overall stability (econom-

ically speaking) over a relatively large τ interval, roughly 250-350 km. Some coefficient

estimates remain stable across even wider neighbor threshold intervals -– please refer

e.g. to the Unem and log(R&Di,t−1) variables. The spatial autoregression coefficient
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ρ increases along with the threshold parameter only up to values around τ = 375 km.

Beyond this threshold, even as we may try to involve more and more “neighbors” into

the modelled spatial dynamics, we can see that ρ values are rather unaffected. This –

along with the decreasing log-likelihood values – clearly indicates that such extensive

neighborhood definitions (interactions) are not supported by the observed data.

8.4. Conclusions

The aim of this chapter was to evaluate different GDP growth factors at the regional

(NUTS2) level within a representative set of EU countries, in order to provide support-

ing and actionable material for macroeconomic decision-making processes that take place

both at the regional and national levels. Despite important data availability limitations,

a balanced panel dataset was gathered, covering 11 EU member states (geographically

adjacent) at the NUTS2 regional level (113 regions) over a period of 7 years (2010-2016).

Although the time period covered is generally considered as a period of economic growth,

important differences in macroeconomic performance can be observed among the regions

examined. Using a spatial panel model methodology, geographical determinations (spa-

tial interactions) are discerned from the influences of relevant macroeconomic variables,

many of which may be subject to or directly controlled by economic policy actions per-

formed by central authorities. Factors such as female labor force participation, unem-

ployment levels, motorway infrastructure, R&D expenditures and other macroeconomic

variables are evaluated and their effect on GDP growth is estimated.

Besides the basic and theoretically conformable effects such as the inverse relationship

between unemployment levels and GDP growth, this paper points out the importance

of “smart” (knowledge-based) factors of economic growth such as R&D expenditures

and promoting the increased share of professional, scientific, organizational and similar

workers within the labor force structure. In contrast, motorway infrastructure (and

the potential investments therein) exhibits no statistically significant effect on GDP

growth, once other factors are controlled for. In addition to coefficient estimation, this

paper also provides model stability evaluation that is used to assess robustness of the

estimated coefficients with respect to varying definitions of spatial interactions. Overall,

the empirical evidence gathered here supports specification robustness for the model

used and its strong potential towards applications in similar fields of macroeconomic

research.

99



9. Final remarks

Spatial econometric models provide an analysis framework where spatial and spatio-

temporal aspects can be controlled for when estimating macroeconomic dynamics. Spa-

tial models allow us to discern geographical determination from the influence of relevant

macro-economic variables, many of which may be subject to or directly controlled by

economic policy actions undertaken by the central authorities at different levels.

One potential drawback of spatial econometric analysis lies in the fact that spatial struc-

ture (spatial matrix) is not estimated along with model parameters. On the contrary:

spatial structure has to be specified before model estimation. At the same time, we usu-

ally lack sufficient theoretical background (prior information) for choosing the “right”

spatial setup.

For example, neighboring (mutually interacting) spatial units can be either based on

contiguity evaluation or based on distances among units (plus, additional approaches

are possible). Even if a specific method for spatial structure construction is chosen – e.g.

based on distances – one needs to provide a controlling parameter: an ad-hoc distance

value that is used for bounding spatial interactions among units.

The majority of current methodological and empirical contributions to spatial econo-

metrics tend to downplay (or even ignore) problems and estimator instability issues

involved with potentially flawed spatial structures being used in spatial models. In con-

trast, this contribution systematically focuses on this topic: In the methodology part,

a relatively simple yet effective algorithm is provided for model robustness evaluation

against changes in the underlying spatial structure. Subsequently, this algorithm is used

in all three empirically based chapters (6 – 8).

This thesis is structured as follows: chapters 1 and 2 provide a brief introduction to the

field of spatial analysis, basic terms are defined and described. Chapter 3 deals with

geo-coded cross-sectional data, corresponding econometric models, their interpretation

and estimation. Chapters 4 and 5 extend the discussion to panel data and models.

Chapters 6 to 8 provide empirical applications, focused on macroeconomic dynamics of

EU’s NUTS2 regions, with emphasis on the Czech Republic and its neighbors (chapters
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9. Final remarks

6 & 7 are based on published contributions [37, 38] and chapter 8 is based on a paper

submitted to the Journal of International Studies.
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A. Supplementary materials

A.1. Taxonomy of spatial models for cross sectional data

This section of the appendix contains a taxonomy of spatial models, reproduced from

Elhorst [28].

Figure A.1.: Different types of spatial dependency in models for cross-section data.
Source: [28].
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A.2. Relationship between semivariogram and covariance

The (semi)variogram (1.9) is a generalization of the covariance function (1.6) and under

second order stationarity the two functions are related:

γ(h) =
1

2
E
[
(Z(s+ h)− Z(s))2

]
,

=
1

2
E
[
[(Z(s+ h)− µ)− (Z(s)− µ)]2

]
,

= −E [(Z(s+ h)− µ)(Z(s)− µ)] +
1

2
E
[
(Z(s+ h)− µ)2

]
+

1

2
E
[
(Z(s)− µ)2

]
= −C(h) +

1

2
C(0) +

1

2
C(0)

= −C(h) + C(0)

= C(0)− C(h)

A.3. Specification of the ε error element in spatial panel

models

This section shows equivalency of the error term ε as provided in equations (4.1) and

(4.6):

ε = ρ(IT ⊗W )ε+ υ,

ε = (IT ⊗ ρW )ε+ υ,

ε− (IT ⊗ ρW )ε = υ,

[INT − (IT ⊗ ρW )]ε = υ,

[IT ⊗ (IN − ρW )]ε = υ,

(IT ⊗BN )ε = υ, where BN = (IN − ρW )

ε = (IT ⊗BN )−1υ,

ε =
(
IT ⊗B−1N

)
υ
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B. List of abbreviations

AIC Akaike information criteria

BIC Bayesian information criteria

CRE Correlated random effects

DGP Data generating process

ECM Error correction model

GDP Gross domestic product

GLS Generalized least squares

GMM Generalized method of moments

GNS Generalized nesting specification [of a spatial model]

ICT Information and Communication Technology [industry-sector]

IVR Instrumental variable regression

kNN k-nearest neighbors

LAU Local administrative unit

LHS Left hand side [of an equation]

LL Log likelihood [maximized value of LL function]

LM Lagrange multiplier [based test]

MEM Moran’s eigenvector map

MSE Mean squared error

ML Maximum likelihood
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B. List of abbreviations

NACE Statistical Classification of Economic Activities in the European Community

[French: Nomenclature statistique des Activités économiques dans la Communauté

Européenne]

NEG New Economic Geography

NUTS Classification of Territorial Units for Statistics

[French: Nomenclature des Unités Territoriales Statistiques]

OLS Ordinary least squares

RHS Right hand side [of an equation]

RSS Residual sum of squares

SDM Spatial Durbin model

SDPD Spatial dynamic panel data [model]

SEM Spatial error model

SLM Spatial lag model

STSV Spatio-temporal semivariogram
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tochv́ıl. Praha: MatfyzPress, Publishing House of the Faculty of Mathematics and

Physics Charles University, 2018, pp. 92–97.
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